Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=\left(\frac{-1}{5}^3\right)^{100}va\left(\frac{-1}{3}^5\right)^{100}\)
\(=\left(\frac{-1}{125}\right)^{100}va\left(\frac{-1}{243}\right)^{100}\)
Mà \(\frac{-1}{125}>\frac{-1}{243}\)
\(\Rightarrow\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)
b)\(2^{27}=8^9;3^{18}=9^9\)
Nhận xét:
Lũy thừa với số mũ chẵn của một số âm là một số dương
Lũy thừa với số mũ lẻ của một số âm là một số âm
a: \(=2^2\cdot9\cdot\dfrac{1}{6\cdot9}\cdot\dfrac{4^2}{9^2}=\dfrac{2^2}{6}\cdot\dfrac{2^4}{3^4}=\dfrac{2^6}{2\cdot3\cdot3^4}=\dfrac{2^5}{3^5}=\left(\dfrac{2}{3}\right)^5\)
b: \(=2^8\cdot\dfrac{3^4}{2^4}=3^4\cdot2^4=6^4\)
c: \(=\dfrac{\left(\dfrac{1}{2}\right)^3\cdot2^3\cdot\left(\dfrac{1}{2}\right)^2}{\left(-8\right)^2\cdot16}\cdot2^6=\dfrac{\dfrac{1}{2^2}}{64\cdot16}\cdot64=\dfrac{1}{4}:16=\dfrac{1}{64}=\left(\dfrac{1}{8}\right)^2\)
a: \(=2^2\cdot9\cdot\dfrac{1}{3^3\cdot2}\cdot\dfrac{2^4}{3^4}=\dfrac{2^4\cdot2^2}{2}\cdot\dfrac{9}{3^3\cdot3^4}=\dfrac{2^5}{3^5}=\left(\dfrac{2}{3}\right)^5\)
b: \(=2^8\cdot\dfrac{3^4}{2^4}=3^4\cdot2^4=6^4\)
c: \(=\dfrac{\dfrac{1}{2^3}\cdot\dfrac{1}{2^2}\cdot8}{\left(-8\right)^2\cdot2^4}\cdot2^6=\dfrac{1}{2^2}\cdot2^6:2^{10}=\dfrac{2^4}{2^{10}}=\dfrac{1}{2^6}=\left(\dfrac{1}{8}\right)^2\)
`(1 1/4)^10 . (2/5)^20`
`=(5/4)^10 . (2/5)^20`
`=(5^10 .2^20)/(4^10 .5^20)`
`=(5^10 .4^10)/(4^10 .5^20)`
`=1/(5^10)`
`=(1/5)^10`
\(\left(\dfrac{1}{2}\right)^{300}=\dfrac{1}{2^{300}}=\dfrac{1}{\left(2^3\right)^{100}}=\dfrac{1}{8^{100}}\)
\(\left(\dfrac{1}{3}\right)^{200}=\dfrac{1}{3^{200}}=\dfrac{1}{\left(3^2\right)^{100}}=\dfrac{1}{9^{100}}\\ \)
\(\dfrac{1}{8^{100}}>\dfrac{1}{9^{100}}\\ \Rightarrow\left(\dfrac{1}{2}\right)^{300}>\left(\dfrac{1}{3}\right)^{200}\)
Bạn ơi so sánh \(\left(\dfrac{1}{2}\right)^{300}và\left(\dfrac{1}{3}\right)^{202}\) mà đâu phải so sánh \(\left(\dfrac{1}{2}\right)^{300}và\left(\dfrac{1}{3}\right)^{200}\)