K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2016

\(C=\frac{1999^{1999}+1}{1999^{2000}+1}<\frac{1999^{1999}+1+1998}{1999^{2000}+1+1998}\)

      \(=\frac{1999^{1999}+1999}{1999^{2000}+1999}\)

      \(=\frac{1999.\left(1999^{1998}+1\right)}{1999.\left(1999^{1999}+1\right)}\)

       \(=\frac{1999^{1998}+1}{1999^{1999}+1}\)\(=D\)

        => C<D

Ai k mik mik k lại. chúc các bạn thi tốt

12 tháng 4 2018

\(C=\frac{1999^{2000}+1}{1999^{1999}+1}< \frac{1999^{1999}+1+1998}{1999^{2000}+1+1998}\)

\(=\frac{1999^{1999}+1999}{1999^{2000}+1999}\)

\(=\frac{1999\cdot(1999^{1998}+1)}{1999\cdot(1999^{1999}+1)}\)

\(=\frac{1999^{1999}+1}{1999^{1998}+1}=D\)

Vậy...

20 tháng 3 2017

ta thấy 19991999 + 1 / 19992000 + 1 < 1 và 1998 > 0

nên ta có: A < 19991999 + 1 + 1998 / 19992000 + 1 + 1998

                    < 19991999 + 1999 / 19992000 + 1999

                    < 1999(19991998 + 1) / 1999(19991999 + 1)

                    < 19991998  + 1 / 19991999 + 1 

                    < B

Vậy A < B

để tui xem lại đã hink như tui làm bài này zùi

8 tháng 5 2018

ta có: \(A=\frac{1999^{1999}+1}{1999^{1998}+1}=\frac{1999.\left(1999^{1998}+1\right)-1998}{1999^{1998}+1}=\frac{1999.\left(1999^{1998}+1\right)}{1999^{1998}+1}-\frac{1998}{1999^{1998}+1}\)

                                                                                                           \(=1999-\frac{1998}{1999^{1998}+1}\)

\(B=\frac{1999^{2000}+1}{1999^{1999}+1}=\frac{1999.\left(1999^{1999}+1\right)-1998}{1999^{1999}+1}=\frac{1999.\left(1999^{1999}+1\right)}{1999^{1999}+1}-\frac{1998}{1999^{1999}+1}\)

                                                                                                          \(=1999-\frac{1998}{1999^{1999}+1}\)

mà \(\frac{1998}{1999^{1998}+1}>\frac{1998}{1999^{1999}+1}\Rightarrow1999-\frac{1998}{1999^{1998}+1}< 1999-\frac{1998}{1999^{1999}+1}\)

                                                                   \(\Rightarrow A< B\)

26 tháng 7 2017

\(\frac{1999^{1999+1}}{1999^{2000+1}}=1-\frac{1}{1999^{2000+1}};\)\(\frac{1999^{1998+1}}{1999^{1999+1}}=1-\frac{1}{1999^{1999+1}}\)

Vì \(1-\frac{1}{1999^{2000+1}}< 1-\frac{1}{1999^{1999+1}}\)nên \(\frac{1999^{1999+1}}{1999^{2000+1}}>\frac{1999^{1998+1}}{1999^{1999+1}}\)

13 tháng 11 2016

22222222222222222222

18 tháng 1 2017

so sanh ma bạn

24 tháng 10 2017

mk ko bt 123

27 tháng 10 2017

buồn quá lúc sáng lại bị cô phê bình vì bài này

30 tháng 7 2017

1999x2000-2/1998x1999+3997

=1999x(1998+2)-2/1998x1999+3997

=1999x1998+3998-2/1998x1999+3997

=1999x1998+3996/1998x1999+3997

=3996/3997

=> 3996/3997 < 1

Vậy 1999x2000-2/1998x1999+3997 < 1

12 tháng 4 2022

3998 ở dâu vậy