K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

băng nhau

13 tháng 12 2017

Nhưng mình cần lời giải chi tiết nhé 🤔

23 tháng 5 2016

mỗi  số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15

23 tháng 5 2016

ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

hay tong tren be hon 15

23 tháng 10 2016

Gọi a là tử số, b là mẫu số của phân số A

a = \(\frac{2008}{1}\)\(\frac{2007}{2}\)\(\frac{2006}{3}\)+ ... + \(\frac{1}{2008}\)

Dãy số a có (2008 - 1)  : 1 + 1 = 2008 số. Và a = ( \(\frac{2008}{1}\)\(\frac{1}{2008}\)) x (2008 : 2) 

b = \(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+ ... + \(\frac{1}{2009}\)

Dãy số b có (2009 - 2) : 1 + 1 = 2008 số. Và b = (\(\frac{1}{2}\)\(\frac{1}{2009}\)) x (2008 : 2)

A = [ ( \(\frac{2008}{1}\)\(\frac{1}{2008}\)) x (2008 : 2)] : [ (\(\frac{1}{2}\)\(\frac{1}{2009}\)) x (2008 : 2)] = ( \(\frac{2008}{1}\)\(\frac{1}{2008}\)) :  (\(\frac{1}{2}\)\(\frac{1}{2009}\)

A = \(\frac{\text{2008 x2008 + 1}}{2008}\)\(\frac{2x2009+2}{2x2009}\)

A = 2008

5 tháng 7 2016

\(\frac{2006}{2007}< \frac{2007}{2007}=1\)

\(\frac{2007}{2008}< \frac{2008}{2008}=1\)

\(\frac{2008}{2009}< \frac{2009}{2009}=1\)

\(\Rightarrow a=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}< 1+1+1=3\)

5 tháng 7 2016

\(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}\)

\(A=\left(1-\frac{1}{2007}\right)+\left(1-\frac{1}{2008}\right)+\left(1-\frac{1}{2009}\right)\)

\(A=\left(1+1+1\right)-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)

\(A=3-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)< 3\)

31 tháng 3 2016

2006/2007<1

2007/2008<1

2008<2009<1

2009/2006>1

A=2006/2007+2007/2008+2008/2009+2009/2006\(\approx\)3+1=4

31 tháng 3 2016

 \(A\approx4\)

29 tháng 3 2015

\(A=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)

\(=\frac{\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+\left(1+\frac{2005}{4}\right)+...+\left(1+\frac{1}{2007}\right)+\left(1+\frac{1}{2008}\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)

\(=\frac{\frac{2009}{2}+\frac{2009}{3}+\frac{2009}{4}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)

\(=\frac{2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}=2009\)

22 tháng 3 2016

$=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}$

$1+\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{1}{2008}\right)$

$\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2008}$

$2009.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}\right)$

A=$\frac{2009.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}}$

A=2009

22 tháng 3 2016

bằng 2009 nha 

13 tháng 8 2017

= 3,000000745

13 tháng 8 2017

đáp án' đúng là :

3,000000745

giống vs của shu ...

29 tháng 8 2015

Xét tử ta có:

\(2008+\frac{2007}{2}+\frac{2006}{3}+....+\frac{1}{2008}\)

\(1+\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{1}{2008}\right)\)

\(\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2008}\)

\(2009.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}\right)\)

=> A = \(\frac{2009.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}}\)

=> A = 2009

 

29 tháng 8 2015

A=\(\frac{\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+\left(1+\frac{2005}{4}\right)+...........+\left(1+\frac{2}{2008}\right)+\left(1+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2008}+\frac{1}{2009}}\)=\(\frac{\frac{2009}{2}+\frac{2009}{3}+\frac{2009}{4}+....+\frac{2009}{2008}+\frac{2009}{2009}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\frac{ }{ }\)  

                                                                                                               =\(\frac{2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2008}+\frac{1}{2009}}\frac{ }{ }\) 

                                                                                                                =2009 

Vay A=2009