Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Thực hiện phép tính sau một cách hợp lí:
\(A=\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)\(=\frac{3.\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}{5.\left(\frac{1}{7}-\frac{5}{7}+\frac{1}{37}\right)}+\frac{-\left(-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}{7.\left(-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}\)
RÕ RÀNG : \(\frac{1}{7}-\frac{5}{7}+\frac{1}{37}\ne0\);\(\frac{-1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\ne0\)
Do đó : \(A=\frac{3}{5}+\frac{-1}{7}=\frac{16}{35}\)
tik mik nha!!!!
C = 1/100 - ( 1/2.1 + 1/3.2 + ... + 1/98.97 + 1/99.98 + 1/100.99
C = 1/100 - ( 1- 1/2+ 1/2 - 1/3 + ... + 1/97 - 1/98 + 1/98 - 1/99 + 1/99 - 1/100 )
C = 1/100 - ( 1 - 1/100 )
C = 1/100 - 99/100
C = \(\frac{-49}{50}\)
A=\([\)\(\frac{2}{7}\)\(\times\)(\(\frac{1}{4}-\frac{1}{3}\))\(]\)\(\div\)\([\)(\(\frac{2}{7}\times\)(\(\frac{3}{9}-\frac{2}{5}\))\(]\)
=(\(\frac{2}{7}\times\)\(\frac{-1}{12}\))\(\div(\)\(\frac{2}{7}\times\)\(\frac{-1}{15}\))
=\(\frac{-1}{42}\)\(\div\)\(\frac{-2}{35}\)
=\(\frac{-1}{42}\)\(\times\)\(\frac{35}{-2}\)
=\(\frac{5}{12}\)
a) \(\frac{-1}{24}-\left[\frac{1}{4}-\left(\frac{1}{2}-\frac{7}{8}\right)\right]\)
= \(\frac{-1}{24}-\left[\frac{6}{24}-\left(\frac{12}{24}-\frac{21}{24}\right)\right]\)
= \(\frac{-1}{24}-\left[\frac{6}{24}-\frac{-9}{24}\right]\)
= \(\frac{-1}{24}-\frac{15}{24}\)
= \(\frac{-16}{24}\) = \(\frac{-2}{3}\)
b) \(\left(\frac{5}{7}-\frac{7}{5}\right)-\left[\frac{1}{2}-\left(-\frac{2}{7}-\frac{1}{10}\right)\right]\)
= \(\left(\frac{50}{70}-\frac{98}{70}\right)-\left[\frac{35}{70}-\left(-\frac{20}{70}-\frac{7}{70}\right)\right]\)
= \(\frac{-48}{70}-\left[\frac{35}{70}-\left(-\frac{20}{70}-\frac{7}{70}\right)\right]\)
= \(\frac{-48}{70}-\left[\frac{35}{70}-\frac{-27}{70}\right]\)
= \(\frac{-48}{70}-\frac{62}{70}\)
= \(\frac{-110}{70}=\frac{-11}{7}\)
\(A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)
\(7A=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\)
\(7A-A=\left(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\right)\)
\(6A=1-\frac{1}{7^{100}}< 1\)
\(A< \frac{1}{6}=\frac{7}{42}< \frac{7}{41}=C\)
=> \(A< C\)
\(B=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^n}+\frac{1}{7^{n+1}}\)
\(7B=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{n-1}}+\frac{1}{7^n}\)
\(7B-B=\left(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{n-1}}+\frac{1}{7^n}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^n}+\frac{1}{7^{n+1}}\right)\)
\(6B=1-\frac{1}{7^{n+1}}< 1\)
\(B< \frac{1}{6}=\frac{7}{42}< \frac{7}{41}=C\)
Nguyễn Hữu Thế fai gọi bằng cách này này:
Hạo ơi giúp vs.
Vậy Lê Nguyên Hạo ms nhận đc thông báo.