Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có A=\(\frac{17^{18}+1}{17^{19}+1}\)<\(\frac{17^{18}+1+16}{17^{19}+1+16}\) (nếu a/b<1 thì a+c/b+c>a/b)
A<\(\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}\)
A,<\(\frac{17^{17}+1}{17^{18}+1}\)=B
hay A<B
\(A=\frac{17^{18}+1}{17^{19}+1}\) với \(B=\frac{17^{17}+1}{17^{18}+1}\)
Ta có :B=\(\frac{17^{17}+1}{17^{18}+1}=\frac{17^{18}+17}{17^{19}+17}\)
Ta có:1-B=\(1-\frac{17^{18}+17}{17^{19}+17}=\frac{17^{19}+17-17^{18}-17}{17^{19}+17}=\frac{17^{19}-17^{18}}{17^{19}+17}\)
1-A=1-\(\frac{17^{18}+1}{17^{19}+1}=\frac{17^{19}+1-17^{18}-1}{17^{19}+1}=\frac{17^{19}-17^{18}}{17^{19}+1}\)
Do \(17^{19}+1< 17^{19}+10\Rightarrow1-A>1-B\)
\(\Rightarrow A< B\)
\(A=\frac{17^{18}+1}{17^{19}+1}\)
\(17A=\frac{17^{19}+17}{17^{19}+1}=\frac{\left(17^{19}+1\right)+16}{17^{19}+1}=1+\frac{16}{17^{19}+1}\)
\(B=\frac{17^{17}+1}{17^{18}+1}\)
\(17B=\frac{17^{18}+17}{17^{18}+1}=\frac{\left(17^{18}+1\right)+16}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)
\(\text{Vì}\)\(1+\frac{16}{17^{19}+1}< 1+\frac{16}{17^{18}+1}\)
\(\Leftrightarrow17A< 17B\)
\(\Leftrightarrow A< B\)
Trả lời
\(17A=\frac{\left(17^{18}+1\right)17}{17^{19}+1}=\frac{17^{19}+17}{17^{19}+1}=\frac{17^{19}+1+16}{17^{19}+1}=\frac{17^{19}+1}{17^{19}+1}+\frac{16}{17^{19}+1}=1+\frac{16}{17^{19}+1}\)
\(17B=\frac{\left(17^{17}+1\right)17}{17^{18}+1}=\frac{17^{18}+17}{17^{18}+1}=\frac{17^{18}+1+16}{17^{18}+1}=\frac{17^{18}+1}{17^{18}+1}+\frac{16}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)
Vì \(17^{19}+1>17^{18}+1\)
\(\Rightarrow\frac{16}{17^{18}+1}>\frac{16}{17^{19}+1}\)
\(\Rightarrow1+\frac{16}{17^{18}+1}>1+\frac{16}{17^{19}+1}\)
\(\Rightarrow B>A\)
Ta có:
\(A=\frac{17^{18}+1}{17^{19}+1}\)
\(17A=\frac{17\left(17^{18}+1\right)}{17^{19}+1}=\frac{17^{19}+17}{17^{19}+1}\)
\(17A=\frac{(17^{19}+1)+16}{(17^{19}+1)}=1+\frac{16}{17^{19}+1}\) (1)
\(B=\frac{17^{17}+1}{17^{18}+1}\)
\(17B=\frac{17\left(17^{17}+1\right)}{17^{18}+1}=\frac{17^{18}+17}{17^{18}+1}\)
\(17B=\frac{(17^{18}+1)+16}{(17^{18}+1)}=1+\frac{16}{17^{18}+1}\) (2)
Từ (1) và (2) => \(1+\frac{16}{17^{19}+1}< 1+\frac{16}{17^{18}+1}\)
=>\(17A< 17B\)
Hay \(A< B\)
Vậy \(A< B\)
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(A=\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}=\frac{17^{18}+17}{17^{19}+17}=\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}=\frac{17^{17}+1}{17^{18}+1}=B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
\(A=\frac{17^{18}+1}{17^{19}+1}\) <=> \(17A=\frac{17^{19}+17}{17^{19}+1}=\frac{17^{19}+1+16}{17^{19}+1}=1+\frac{16}{17^{19}+1}\)
\(B=\frac{17^{17}+1}{17^{18}+1}\)<=> \(17B=\frac{17^{18}+17}{17^{18}+1}=\frac{17^{18}+1+16}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)
Nhận thấy: 1719+1 > 1718+1 => \(\frac{16}{17^{18}+1}>\frac{16}{17^{19}+1}\)
=> 17B > 17A
=> B > A
Ta có:17A=\(\frac{17.\left(17^{18}+1\right)}{17^{19}+1}=\frac{17^{19}+17}{17^{19}+1}=\frac{17^{19}+1+16}{17^{19}+1}=1+\frac{16}{17^{19}+1}\)
17B=\(\frac{17.\left(17^{17}+1\right)}{17^{18}+1}=\frac{17^{18}+17}{17^{18}+1}=\frac{17^{18}+1+16}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)
Vì \(\frac{16}{17^{19}+1}<\frac{16}{17^{18}+1}\) nên 17A<17B nên A<B
Mình biết cách làm nhưng ngại viết lắm. Mình cho bạn cách làm nha. Bạn nhân cả x và y với 17 rồi so sánh 17x với 17y, 17x>17y thì x>y, 17y>17x thì y>x. Bài này kết quả là y<x
bạn cùng nhân với 17 vào cả hai vế và sau đó so sánh phần thừa
sau đó ta sẽ được y<x
\(A=\frac{17^{18}+1}{17^{19}+1}<\frac{17^{18}+1+16}{17^{19}+1+16}=\frac{17^{18}+17}{17^{19}+17}=\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}=\frac{17^{17}+1}{17^{18}+1}\)
\(\Rightarrow\frac{17^{18}+1}{17^{19}+1}<\frac{17^{17}+1}{17^{18}+1}\) => A < B