Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A=\frac{2017-2018}{2017+2018}=\frac{\left(2017-2018\right)\left(2017+2018\right)}{\left(2017+2018\right)^2}=\frac{2017^2-2018^2}{2017^2+2018^2+2.2017.2018}< \frac{2017^2-2018^2}{2017^2+2018^2}=B\)
Vậy A<B
Ta thấy \(A=\frac{2018-2017}{2018+2017}=\frac{2018^2-2017^2}{\left(2018+2017\right)^2}=\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}\)
Mà \(2018^2+2.2018.2017+2017^2>2018^2+2017^2\)
\(\Rightarrow\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}< \frac{2018^2-2017^2}{2018^2+2017^2}\)
Vậy A<B
Ta có: \(\left(2018+2017\right)^2>2018^2+2017^2\)
Ta có: \(C=\frac{2018^2-2017^2}{2018^2+2017^2}\)
\(=\frac{\left(2018-2017\right)\left(2018+2017\right)}{2018^2+2017^2}=\frac{2018+2017}{2018^2+2017^2}\)
Ta có: \(D=\frac{2018-2017}{2018+2017}\)
\(=\frac{\left(2018-2017\right)\left(2018+2017\right)}{\left(2018+2017\right)^2}=\frac{2018+2017}{\left(2018+2017\right)^2}\)
Đặt a=2018
b=2017
Ta có: \(\left(2018+2017\right)^2=\left(a+b\right)^2\)
\(2018^2+2017^2=a^2+b^2\)
mà \(\left(2018+2017\right)^2>2018^2+2017^2\)(cmt)
nên \(\left(a+b\right)^2>a^2+b^2\)
\(\Leftrightarrow\frac{a+b}{\left(a+b\right)^2}< \frac{a+b}{a^2+b^2}\)
hay \(\frac{2018+2017}{\left(2018+2017\right)^2}< \frac{2018+2017}{2018^2+2017^2}\)
hay D<C
Đặt x - 2017 = a
Phương trình trên tương đương:
\(\dfrac{\left(-a\right)^2-\left(-a\right)\left(a-1\right)+\left(a-1\right)^2}{\left(-a\right)^2+\left(-a\right)\left(a-1\right)+\left(a-1\right)^2}=\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{a^2+a^2-a+a^2-2a+1}{a^2-a^2+a+a^2-2a+1}=\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{3a^2-3a+1}{a^2-a+1}=\dfrac{5}{3}\)
\(\Leftrightarrow9x^2-9x+3=5x^2-5x+5\)
\(\Leftrightarrow4x^2-4x-2=0\)
\(\Leftrightarrow\left(x-\dfrac{1+\sqrt{3}}{2}\right)\left(x-\dfrac{1-\sqrt{3}}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1+\sqrt{3}}{2}\\\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình: \(S=\left\{\dfrac{1+\sqrt{3}}{2};\dfrac{1-\sqrt{3}}{2}\right\}\)