Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C-D=\dfrac{\left(98^{99}+1\right)\left(98^{88}+1\right)-\left(98^{89}+1\right)\left(98^{98}+1\right)}{\left(98^{89}+1\right)\left(98^{88}+1\right)}\)
\(=\dfrac{98^{187}+98^{99}+98^{88}+1-98^{197}-98^{89}-98^{98}-1}{\left(98^{89}+1\right)\left(98^{88}+1\right)}\)
\(=\dfrac{98^{99}-98^{98}+98^{88}-98^{89}}{\left(98^{89}+1\right)\left(98^{88}+1\right)}=\dfrac{98^{98}\left(98-1\right)-98^{88}\left(98-1\right)}{\left(98^{89}+1\right)\left(98^{88}+1\right)}\)
\(=\dfrac{97.98^{98}-97.98^{88}}{\left(98^{89}+1\right)\left(98^{88}+1\right)}=\dfrac{97.98^{88}\left(98^{10}-1\right)}{\left(98^{89}+1\right)\left(98^{88}+1\right)}>0\)
\(\Rightarrow C>D\)
`A=3/4+8/9+.............+9999/10000`
`=1-1/4+1-1/9+,,,,,,,,,,+1-1/10000`
`=99-(1/4+1/9+.........+1/10000)<99-0=99`
`=>A<99`
\(A=\frac{98^{99}+1}{98^{89}+1}>\frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=B\)
Vậy A>B
798 + 799 + 7100 và 7101
Bên 798 + 799 + 7100 ta tính như sau:
798 + 799 + 7100 = 798 + 99 + 100 = 7297
Vì 7297 > 7101 nên 798 + 799 + 7100 > 7101
A=7^98+7^99+7^100
7A=7.7^98+7.7^99+7.7^100
7A=7^99+7^100+7^101
7A-A=(7^99+7^100+7^101)-(7^98+7^99+7^100)
=> 6A=7^101-7^98
=> A=(7^101-7^98):6
Mà: B=7^101
=> A<B
=> 7^98+7^99+7^100<7^101.
K nhé, tui cảm ơn.
Ta có: A = 98/99 < 1
B = 98*99+1/98*99 > 1
=> A < B
Ta có: A = 98/99 < 1
B = 98*99+1/98*99 > 1
=> A < B