K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

Ta có : A = \(333^{444}=\left(333^4\right)^{111}\)

             B = \(444^{333}=\left(444^3\right)^{111}\)

A và B đã có cùng mẫu số là 111 \(\Rightarrow\)cần so sánh \(333^4\)\(444^3\).

\(333^4=\left(3\times111\right)^4=3^4\times111^4=81\times111^4\)

\(444^3=\left(4\times111\right)^3=4^3\times111^3=64\times111^3\)

\(\Rightarrow333^4>444^3\Rightarrow333^{444}>444^{333}.\)

5 tháng 7 2016

Đây là câu b) :

Ta có : \(5^{200}=\left(5^2\right)^{100}=25^{100}\)

             \(2^{500}=\left(2^5\right)^{100}=32^{100}\)

Mà \(25^{100}< 32^{100}\Rightarrow5^{200}< 2^{500}\).

Vậy \(5^{200}< 2^{500}\).

12 tháng 10 2015

a) 2300=(23)100=8100

3200=(32)100=9100

Vì 8100<9100 nên 2300<3200

b)3334=(3 . 111)4=3. 1114=1113 . 34.111

4443=(111 . 4)3=1113.43

Xét 34.111=8991

43=64

Vì 64<8911 nên 3334>4443

c)23n=(23)n=8n

32n=(32)n=9n

Vì 8n<9n nên 23n<32n

d)3300=(32)150=9150

2450=(23)150=8150

Vì 8150<9150 nên 3300>2450

lại sai đề 

a/ 3^200 và 2^300 chứ 0 phải 3000

7 tháng 2 2016

chưa có học đến

24 tháng 1 2019

a) 10^30 và 2^100
Ta có: 10^30 = (10^3)^10 = 1000^10
          2^100 = (2^10)^10 = 1024^10
Do 1024^10 > 1000^10 => 2^100 > 10^30

b) 333^444 và 444^333
Ta có: 333^444 = 111^444 x 3^444 
          444^333 = 111^333 x 4^333 
Tách: 3^444 = (3^4)^111 =81^111 <=>4^333 = (4^3)^111 = 64^111 
Mà: {111^444 > 111^333 (1) 
       {81^111 > 64^111 hay: (3^4)^111 > (4^3)^111 (2) 
Từ (1) và (2) ta có:333^444 > 444^333

c) 3^450 =(3^3)^150 =27^150 
5^300=(5^2)^150=25^150 
vì 27^150 >25^150 =>3^450 > 5^300 
vậy 3^450 > 5^300

24 tháng 1 2019

a) \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)

\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)

Mà \(1000^{10}< 1024^{10}\Rightarrow10^{30}< 2^{100}\)

b) \(3^{400}=\left(3^4\right)^{100}=81^{100}\)

\(5^{300}=\left(5^3\right)^{100}=125^{100}\)

Mà \(81^{100}< 125^{100}\Rightarrow3^{400}< 5^{300}\)

c) \(333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)

\(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)

Mà \(81^{111}.111^{444}>64^{111}.111^{333}\Rightarrow333^{444}>444^{333}\)

9 tháng 12 2014

A=(3.111)4.111=(34)111.(1114)111=81111.(111444

B=(4.111)3.111=(43)111.(1113)111=64111.111333

81111>64111; 111444>111333 => A>B

6 tháng 11 2015

Ta có : 

\(333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)

\(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)

Vì \(81^{111}>64^{111}\) và \(111^{444}>111^{333}\)

nên \(81^{111}.111^{444}>64^{111}.111^{333}\)

Vậy \(333^{444}>444^{333}\)

tích mình nha !!!

 

6 tháng 11 2015

A=333^444=111^3.444=111^1332

B=444^333=111^4.333=111^1332

=>A=B