Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\dfrac{3^{10}+1}{3^9+1}\)
\(\Leftrightarrow A=\dfrac{3^{10}+3-2}{3^9+1}\)
hay \(A=3-\dfrac{2}{3^9+1}\)
Ta có: \(B=\dfrac{3^9+1}{3^8+1}\)
\(\Leftrightarrow B=\dfrac{3^9+3-2}{3^8+1}\)
hay \(B=3-\dfrac{2}{3^8+1}\)
Ta có: \(3^9+1>3^8+1\)
\(\Leftrightarrow\dfrac{2}{3^9+1}< \dfrac{2}{3^8+1}\)
\(\Leftrightarrow-\dfrac{2}{3^9+1}>-\dfrac{2}{3^8+1}\)
\(\Leftrightarrow-\dfrac{2}{3^9+1}+3>-\dfrac{2}{3^8+1}+3\)
hay A>B
Ta có:
\(\frac{1}{3}\)A = \(\frac{3^{10}+1}{3^{10}+3}\)
= \(\frac{3^{10}+1}{3^{10}+1+2}\)
= \(1+\frac{3^{10}+1}{2}\)
\(\frac{1}{3}\)B = \(\frac{3^9+1}{3^9+3}\)
= \(\frac{3^9+1}{3^9+1+2}\)
= 1 + \(\frac{3^9+1}{2}\)
Đương nhiên \(1+\frac{3^{10}+1}{2}\) > 1 + \(\frac{3^9+1}{2}\)
=> A > B
A= 1/3+1/6+1/10+...+1/561
= 2. (1/6+1/12+1/20+...+1/1122)
= 2. [1/(2.3) + 1/(3.4) + 1/(4.5) +...+1/(33.34)]
= 2. ( 1/2 - 1/3 +1/3 - 1/4 + 1/4 - 1/5 +...+ 1/33 - 1/34 )
=2. (1/2 - 1/34)
=2. 8/17
=16/17
Vì 16/17 > 16/18 = 8/9 -> A > 8/9
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{561}\)
\(A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{1122}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{33.34}\)
\(A=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{33.34}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{33}-\frac{1}{34}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{34}\right)\)
\(A=2.\left(\frac{17-1}{34}\right)\)
\(A=2.\frac{8}{17}\)
\(A=\frac{16}{17}>\frac{16}{18}=\frac{8}{9}\)
\(\Rightarrow A>\frac{8}{9}\)