Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xet bt A ta co
A=2016.2017+1/2016.2017
=1+1/2016.2017
xet bt B ta co
B=2017.2018+1/2017.2018
=1+1/2017.2018
vì 1/2016.2017>1/2017.2018
nen 1+1/2016.2017>1+1/2017.2018
suy ra A>B
ai thay mik lam đúng thì k cho mik nha
A=\(\dfrac{2016.2017+1}{2016.2017}=\dfrac{2016.2017}{2016.2017}+\dfrac{1}{2016.2017}=1+\dfrac{1}{2016.2017}\)
A=\(\dfrac{2017.2018+1}{2017.2018}=\dfrac{2017.2018}{2017.2018}+\dfrac{1}{2017.2018}=1+\dfrac{1}{2017.2018}\)
Mà 1=1; \(\dfrac{1}{2016.2017}\)>\(\dfrac{1}{2017.2018}\) nên A>B
\(\frac{2017.2018-1}{2017.2018}=1-\frac{1}{2017.2018}\)
\(\frac{2018.2019-1}{2018.2019}=1-\frac{1}{2018.2019}\)
Ta thấy \(2017.2018< 2018.2019\)
nên \(\frac{1}{2017.1018}>\frac{1}{2018.2019}\)
\(\Rightarrow\)\(1-\frac{1}{2017.2018}< 1-\frac{1}{2018.2019}\)
Vậy \(\frac{2017.2018-1}{2017.2018}< \frac{2018.2019-1}{2018.2019}\)
Ta có : \(\frac{2017.2018+1}{2017.2018}=1+\frac{1}{2017.2018}\)
\(\frac{2018.2019+1}{2018.2019}=1+\frac{1}{2018.2019}\)
Mà : \(\frac{1}{2017.2018}>\frac{1}{2018.2019}\) => \(\frac{2017.2018+1}{2017.2018}>\frac{2018.2019+1}{2018.2019}\)
a) \(\frac{53}{57}=\frac{530}{570}\)
Ta có : 1 - \(\frac{530}{570}\)= \(\frac{40}{570}\) ; 1 - \(\frac{531}{571}=\frac{40}{571}\)
Vì \(\frac{40}{570}>\frac{40}{571}\) nên \(\frac{53}{57}< \frac{531}{571}\)
Ta có:
\(C=\frac{2017.2018-1}{2017.2018}=1-\frac{1}{2017.2018}\)
\(D=\frac{2018.2019-1}{2018.2019}=1-\frac{1}{2018.2019}\)
Mà ta có:
\(\frac{1}{2017.2018}>\frac{1}{2018.2019}\Rightarrow1-\frac{1}{2017.2018}< 1-\frac{1}{2018.2019}\Rightarrow C< D\)
`a=(2017.2018-1)/(2017.2018)`
`=1-1/(2017.2018)`
`b=(2018.2019-1)/(2018.2019)`
`=1-1/(2018.2019)`
Vì `2017.2018<2019.2018`
`=>1/(2017.2018)>1/(2019.2018)`
`=>1-1/(2017.2018)<1-1/(2019.2018)`
Hay `a<b`
Vì 2016x2017-\(\frac{1}{2016x2017}\)=4066272
2017x2018-\(\frac{1}{2017x2018}\)=4070306
Mà 4066272<4070306
Nên a<b