K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2018

Đề có sai ko bạn , hình như đề phải là :

B = 1/210.212

Với đề của bạn thì :

211^2 < 201.2012

=> A > B

Với đề của mk thì :

210.212 = 210.211+210 = (210.211+211)-1 = 211.(210+1)-1 = 211^2-1 < 211^2

=> A < B

Tk mk nha

3 tháng 4 2017

\(119H=\frac{119\left(119^{209}+1\right)}{119^{210}+1}=\frac{119^{210}+119}{119^{210}+1}=1+\frac{118}{119^{210}}\)

\(119K=\frac{119\left(119^{210}+1\right)}{119^{211}+1}=\frac{119^{211}+119}{119^{211}+1}=1+\frac{118}{119^{211}+1}\)

Vì 119211+1>119210+1 nên \(\frac{118}{119^{211}+1}< \frac{118}{119^{210}+1}\)

\(=>119K< 119H\)

\(=>K< H\)

20 tháng 8 2021

2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

              \(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)

Vậy \(2^{332}< 3^{223}\)

20 tháng 8 2021

1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)

\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)

Nên suy ra \(10A>10B\Rightarrow A>B\)

28 tháng 6 2015

\(A=1+\frac{1}{2}+...+\frac{1}{2^{100}}\)

=>\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\)

=>2A-A=\(\left(2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{100}}\right)=2-\frac{1}{2^{100}}

28 tháng 6 2015

=> \(\frac{1}{2}\)A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{101}}\)

=> A - \(\frac{1}{2}\) A = \(\frac{1}{2}\)A = \(\frac{1}{2^{101}}-1\)

=> A = \(\frac{\frac{1}{2^{101}}-1}{2}=\frac{\frac{1}{2^{101}}}{2}-\frac{1}{2}=\frac{1}{2^{102}}-\frac{1}{2}