Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{200}-1\right)\)
\(-A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{200}\right)\)
\(-A=\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{199}{200}\)
\(-A=\frac{1}{200}\)
\(A=\frac{-1}{200}>\frac{-1}{199}\)
Ta có: \(A=1+3^1+3^2+3^3+...+3^{199}+3^{200}\)
\(\Rightarrow3A=3^1+3^2+3^3+3^4+...+3^{201}\)
\(\Rightarrow3A-A=\left(3^1+3^2+3^3+3^4+...+3^{201}\right)-\left(1+3^1+3^2+3^3+...+3^{200}\right)\)
\(\Rightarrow2A=3^{201}-1\)
\(\Rightarrow A=\frac{3^{201}-1}{2}< 3^{201}-1< 3^{201}=B\)
Vậy A < B
Bài 1:
a: Sửa đề: 1/3^200
1/2^300=(1/8)^100
1/3^200=(1/9)^100
mà 1/8>1/9
nên 1/2^300>1/3^200
b: 1/5^199>1/5^200=1/25^100
1/3^300=1/27^100
mà 25^100<27^100
nên 1/5^199>1/3^300
Sửa đề : \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+......+\frac{1}{2^{199}}\)
\(\Rightarrow2A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{198}}\)
\(\Rightarrow2A-A=A=\frac{1}{2}-\frac{1}{2^{199}}< \frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
Vậy \(A< \frac{3}{4}\)
\(A=\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right)...\left(\frac{1}{200}-1\right)\)
\(=\frac{-1}{2}.\frac{-2}{3}...\frac{-199}{200}=\frac{\left(-1\right).\left(-2\right)...\left(-199\right)}{2.3...200}=\frac{-1}{200}\)
Mà \(\frac{-1}{200}>\frac{-1}{199}\)nên \(A>\frac{-1}{199}\)