Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :1990^10 + 1990^9 = 1990^9 . (1990+1) = 1990^9 . 1991
và 1991^10 = 1991^9 . 1991
Vì 1990 < 1991 nên 1990^10 + 1990^9 < 1991^10
Giải:
Ta gọi \(\dfrac{10^{1990}+1}{10^{1991}+1}\) =A và \(\dfrac{10^{1991}}{10^{1992}}\) =B
Ta có:
A=\(\dfrac{10^{1990}+1}{10^{1991}+1}\)
10A=\(\dfrac{10^{1991}+10}{10^{1991}+1}\)
10A=\(\dfrac{10^{1991}+1+9}{10^{1991}+1}\)
10A=\(1+\dfrac{9}{10^{1991}+1}\)
Tương tự:
B=\(\dfrac{10^{1991}}{10^{1992}}\)
10B=\(\dfrac{10^{1992}}{10^{1992}}=1\)
Vì \(\dfrac{9}{10^{1991}+1}< 1\) nên 10A<10B
⇒ \(\dfrac{10^{1990}+1}{10^{1991}+1}\) < \(\dfrac{10^{1991}}{10^{1992}}\)