K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{35.37}=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{35}-\frac{1}{37}\)

\(=\frac{1}{1}-\frac{1}{37}<1\text{ Vậy }A<1\)

31 tháng 12 2015

Monkey D.Luffy điêu vừa thui mới học lớp 6 mà ông cũng nói dễ

20 tháng 7 2021

ĐK : 51x \(\ge0\Rightarrow x\ge0\)

Với \(x\ge0\)thì \(x+\frac{1}{1.3}>0;x+\frac{1}{3.5}>0;...;x+\frac{1}{99.101}>0\)

Khi đó : \(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}\right|+\left|x+\frac{1}{5.7}\right|+...+\left|x+\frac{1}{99.101}\right|=51x\)

<=> \(x+\frac{1}{1.3}+x+\frac{1}{3.5}+x+\frac{1}{5.7}+....+x+\frac{1}{99.101}=51x\)(50 hạng tử x ở VT)

<=> \(50x+\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}=51x\)

<=> \(x=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{99.101}\right)\)

<=> \(x=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

<=> \(x=\frac{1}{2}\left(1-\frac{1}{101}\right)=\frac{50}{101}\)

Vậy x = 50/101 

16 tháng 12 2016

1/2[2/1.3+2/3.5+2/5.7+.........+2/x(x+2)]=16/34

2/1.3+2/3.5+2/5.7+......+2/x(x+2)=16/34:1/2=16/17

1/1-1/3+1/3-1/5+1/5-1/7+.....+1/x-1/x+2=16/17

1-1/x+2=16/17

1/x+2=1-16/17=1/17

suy ra:x+2=17

x=17-2

x=15

13 tháng 1 2019

Hướng dẫn:

\(M=\frac{1^2}{1.3}+\frac{2^2}{3.5}+\frac{3^2}{5.7}+...+\frac{99^2}{197.199}\)

\(\Rightarrow4M=\frac{1.4}{1.3}+\frac{4.4}{3.5}+\frac{9.4}{5.7}+...+\frac{9801.4}{197.199}\)

\(\Rightarrow4M=\frac{2.2}{1.3}+\frac{4.4}{3.5}+\frac{6.6}{5.7}+...+\frac{198.198}{197.199}\)

Đến đoạn này bạn đưa về dạng tổng quát nhé:

\(\frac{n^2}{\left(2n-1\right)\left(2n+1\right)}=\frac{1}{4}+\frac{1}{8\left(2n-1\right)}-\frac{1}{8\left(2n+1\right)}\) (Tự phân tích)

Sau đó thay vào A. Kết quả tìm được là \(A=\frac{1}{8}-\frac{1}{8.2013}+\frac{1006}{4}=251,6249379\)

11 tháng 12 2018

tớ làm câu b thôi, câu a nhân 1/2 lên là đc 

\(A=\frac{1}{2}.\left[\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right).\left(2n+1\right)}\right)\right]\)

\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2.n-1}-\frac{1}{2n+1}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2n+1}\right)=\frac{1}{2}-\frac{1}{2.\left(2n+1\right)}< \frac{1}{2}\)

p/s: lưu ý không có dấu "=" đâu nhé vì \(\frac{1}{2.\left(2n+1\right)}>0\left(n\text{ thuộc }N\right)\)

C1:

Ta có

x+10%x-10%x=297

=>x=297

C2:

S=Đề bài...

=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\)

=\(\frac{1}{1}-\frac{1}{101}\)

=\(\frac{100}{101}\)

#hoctot

10 tháng 9 2019

Câu 2:

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.100}\)

\(\Rightarrow2S=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.100}\right)\)

\(\Rightarrow2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.100}\)

\(\Rightarrow2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}+\frac{1}{101}\)

\(\Rightarrow2S=1-\frac{1}{101}\)

\(\Rightarrow2S=\frac{100}{101}\)

\(\Rightarrow S=\frac{100}{101}:2=\frac{100}{101}.\frac{1}{2}=\frac{50}{101}\)

Giúp mình với:Câu 1:Cho B= \(\frac{1}{2\left(n-1\right)^2+3}\).Tìm số nguyên n để B có giá trị lớn nhất.Câu 2:Độ dài ba cạnh của một tam giác tỉ lệ với 2;3;4. Hỏi ba chiều cao trương ứng ba cạnh đó tỉ lệ với số nào?Câu 3:a, Tính A=1+1/2(1+2)+1/3(1+2+3)+...+1/20(1+2+3+...+20)b, So sánh \(\sqrt{17}+\sqrt{26}+1\) và \(\sqrt{99}\)c,Chứng minh...
Đọc tiếp

Giúp mình với:

Câu 1:Cho B= \(\frac{1}{2\left(n-1\right)^2+3}\).Tìm số nguyên n để B có giá trị lớn nhất.

Câu 2:Độ dài ba cạnh của một tam giác tỉ lệ với 2;3;4. Hỏi ba chiều cao trương ứng ba cạnh đó tỉ lệ với số nào?

Câu 3:

a, Tính A=1+1/2(1+2)+1/3(1+2+3)+...+1/20(1+2+3+...+20)

b, So sánh \(\sqrt{17}+\sqrt{26}+1\) và \(\sqrt{99}\)

c,Chứng minh rằng: \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)

Câu 4: Tìm một số có 3 chữ số biết rằng số đó chia hết cho 18 và các chữ số của nó tỷ lệ với 1;2;3.

Các bạn ạ! Mình cảm thấy rất có lỗi khi đã hỏi quá nhiều! Các bạn trả lời cho mình rất nhiệt tình mà mình chỉ trả lời chỉ có vài câu hỏi của các bạn! Mong các bạn lượng thứ! Mình hứa lên lớp thì mình sẽ giảng giải lại cho các bạn. Chúc HỌC24 phát triển mạnh, các bạn học giỏi lên mỗi ngày với HỌC24 nha!

5
20 tháng 6 2016

Mỗi câu hỏi bạn chỉ đăng 1 bài toán lên thôi nha nếu muốn nhận được câu trả lời nhanh haha

Câu 1 : 

\(B=\frac{1}{2\left(n-1\right)^2+3}\) có GTLN

<=> 2(n - 1)2 + 3 có GTNN

Ta có : (n - 1)2 > 0 => 2(n - 1)2 > 0 => 2(n - 1)2 + 3 > 3

=> GTNN của 2(n - 1)2 + 3 là 3 <=> (n - 1)2 = 0 <=> n = 1

Vậy B có GTLN là \(\frac{1}{3}\) <=> n = 1

\(M=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2019}\right)\)

\(=\frac{1}{2}.\frac{2018}{2019}\)

\(=\frac{2018}{4038}\)

\(\Rightarrow\frac{2018}{4038}< \frac{1}{2}\)( lấy máy tính ) 

18 tháng 12 2019

\(M=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{2017.2019}\)

\(\Rightarrow M=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-......-\frac{1}{2017}+\frac{1}{2017}-\frac{1}{2019}\)

\(\Rightarrow M=1-\frac{1}{2019}\)

\(\Rightarrow M=\frac{2019}{2019}-\frac{1}{2019}\)

\(\Rightarrow M=\frac{2018}{2019}\)

Có \(\frac{2018}{2019}=\frac{2018.2}{2019.2}=\frac{4036}{4038}\)

\(\frac{1}{2}=\frac{1.2019}{2.2019}=\frac{2019}{4038}\)

Mà \(\frac{4036}{4038}< \frac{2019}{4038}\Rightarrow M< \frac{1}{2}\)

Vậy M < \(\frac{1}{2}\)

9 tháng 2 2017

A=\(\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}...\frac{1-100^2}{100^2}\)

trong biểu thức trên có 99 số âm nên tích sẽ âm nên ta có thể viết lại như sau:

A=-\(\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\),

Chú ý: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

do vậy: A=-\(\frac{1.3}{2^2}.\frac{2.4}{3^2}...\frac{99.101}{100^2}=\frac{1.2.3...100.101}{2^2.3^2...100^2}=\frac{-101}{100!}>\frac{-101}{2.101}=\frac{-1}{2}\)

Vậy A>\(-\frac{1}{2}\)

30 tháng 7 2016

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

30 tháng 7 2016

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)