Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK : 51x \(\ge0\Rightarrow x\ge0\)
Với \(x\ge0\)thì \(x+\frac{1}{1.3}>0;x+\frac{1}{3.5}>0;...;x+\frac{1}{99.101}>0\)
Khi đó : \(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}\right|+\left|x+\frac{1}{5.7}\right|+...+\left|x+\frac{1}{99.101}\right|=51x\)
<=> \(x+\frac{1}{1.3}+x+\frac{1}{3.5}+x+\frac{1}{5.7}+....+x+\frac{1}{99.101}=51x\)(50 hạng tử x ở VT)
<=> \(50x+\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}=51x\)
<=> \(x=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{99.101}\right)\)
<=> \(x=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
<=> \(x=\frac{1}{2}\left(1-\frac{1}{101}\right)=\frac{50}{101}\)
Vậy x = 50/101
1/2[2/1.3+2/3.5+2/5.7+.........+2/x(x+2)]=16/34
2/1.3+2/3.5+2/5.7+......+2/x(x+2)=16/34:1/2=16/17
1/1-1/3+1/3-1/5+1/5-1/7+.....+1/x-1/x+2=16/17
1-1/x+2=16/17
1/x+2=1-16/17=1/17
suy ra:x+2=17
x=17-2
x=15
Hướng dẫn:
\(M=\frac{1^2}{1.3}+\frac{2^2}{3.5}+\frac{3^2}{5.7}+...+\frac{99^2}{197.199}\)
\(\Rightarrow4M=\frac{1.4}{1.3}+\frac{4.4}{3.5}+\frac{9.4}{5.7}+...+\frac{9801.4}{197.199}\)
\(\Rightarrow4M=\frac{2.2}{1.3}+\frac{4.4}{3.5}+\frac{6.6}{5.7}+...+\frac{198.198}{197.199}\)
Đến đoạn này bạn đưa về dạng tổng quát nhé:
\(\frac{n^2}{\left(2n-1\right)\left(2n+1\right)}=\frac{1}{4}+\frac{1}{8\left(2n-1\right)}-\frac{1}{8\left(2n+1\right)}\) (Tự phân tích)
Sau đó thay vào A. Kết quả tìm được là \(A=\frac{1}{8}-\frac{1}{8.2013}+\frac{1006}{4}=251,6249379\)
tớ làm câu b thôi, câu a nhân 1/2 lên là đc
\(A=\frac{1}{2}.\left[\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right).\left(2n+1\right)}\right)\right]\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2.n-1}-\frac{1}{2n+1}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2n+1}\right)=\frac{1}{2}-\frac{1}{2.\left(2n+1\right)}< \frac{1}{2}\)
p/s: lưu ý không có dấu "=" đâu nhé vì \(\frac{1}{2.\left(2n+1\right)}>0\left(n\text{ thuộc }N\right)\)
C1:
Ta có
x+10%x-10%x=297
=>x=297
C2:
S=Đề bài...
=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\)
=\(\frac{1}{1}-\frac{1}{101}\)
=\(\frac{100}{101}\)
#hoctot
Câu 2:
\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.100}\)
\(\Rightarrow2S=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.100}\right)\)
\(\Rightarrow2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.100}\)
\(\Rightarrow2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}+\frac{1}{101}\)
\(\Rightarrow2S=1-\frac{1}{101}\)
\(\Rightarrow2S=\frac{100}{101}\)
\(\Rightarrow S=\frac{100}{101}:2=\frac{100}{101}.\frac{1}{2}=\frac{50}{101}\)
Mỗi câu hỏi bạn chỉ đăng 1 bài toán lên thôi nha nếu muốn nhận được câu trả lời nhanh
Câu 1 :
\(B=\frac{1}{2\left(n-1\right)^2+3}\) có GTLN
<=> 2(n - 1)2 + 3 có GTNN
Ta có : (n - 1)2 > 0 => 2(n - 1)2 > 0 => 2(n - 1)2 + 3 > 3
=> GTNN của 2(n - 1)2 + 3 là 3 <=> (n - 1)2 = 0 <=> n = 1
Vậy B có GTLN là \(\frac{1}{3}\) <=> n = 1
\(M=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}.\frac{2018}{2019}\)
\(=\frac{2018}{4038}\)
\(\Rightarrow\frac{2018}{4038}< \frac{1}{2}\)( lấy máy tính )
\(M=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{2017.2019}\)
\(\Rightarrow M=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-......-\frac{1}{2017}+\frac{1}{2017}-\frac{1}{2019}\)
\(\Rightarrow M=1-\frac{1}{2019}\)
\(\Rightarrow M=\frac{2019}{2019}-\frac{1}{2019}\)
\(\Rightarrow M=\frac{2018}{2019}\)
Có \(\frac{2018}{2019}=\frac{2018.2}{2019.2}=\frac{4036}{4038}\)
\(\frac{1}{2}=\frac{1.2019}{2.2019}=\frac{2019}{4038}\)
Mà \(\frac{4036}{4038}< \frac{2019}{4038}\Rightarrow M< \frac{1}{2}\)
Vậy M < \(\frac{1}{2}\)
A=\(\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}...\frac{1-100^2}{100^2}\)
trong biểu thức trên có 99 số âm nên tích sẽ âm nên ta có thể viết lại như sau:
A=-\(\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\),
Chú ý: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
do vậy: A=-\(\frac{1.3}{2^2}.\frac{2.4}{3^2}...\frac{99.101}{100^2}=\frac{1.2.3...100.101}{2^2.3^2...100^2}=\frac{-101}{100!}>\frac{-101}{2.101}=\frac{-1}{2}\)
Vậy A>\(-\frac{1}{2}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{35.37}=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{35}-\frac{1}{37}\)
\(=\frac{1}{1}-\frac{1}{37}<1\text{ Vậy }A<1\)
Monkey D.Luffy điêu vừa thui mới học lớp 6 mà ông cũng nói dễ