Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: -8/12<0<-3/-4
b: -56/24<0<7/3
c: 4/25<1<15/13
=>-4/25>-15/13
Bài 2:
a: =-60/45=-4/3
b: =4/15-3/2-8/5=8/30-45/30-48/30=-85/30=-17/6
a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)
b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)
1.
a) \(-\frac{15}{17}>-\frac{19}{21}\)
b)\(-\frac{13}{19}>-\frac{19}{23}\)
c)\(-\frac{23}{49}>-\frac{25}{47}\)
d)\(\frac{317}{633}>\frac{371}{743}\)
e)\(-\frac{24}{35}< -\frac{19}{30}\)
f)\(\frac{12}{17}< \frac{13}{18}\)
g) \(-\frac{17}{26}< -\frac{16}{27}\)
h) \(\frac{84}{-83}< -\frac{337}{331}\)
i) \(-\frac{1941}{1931}< -\frac{2011}{2001}\)
j) \(-\frac{1930}{1945}>-\frac{1996}{2001}\)
k) \(\frac{37}{59}< \frac{47}{59}\)
I) \(-\frac{25}{124}>-\frac{27}{100}\)
m) \(-\frac{97}{201}>-\frac{194}{309}\)
n) \(-\frac{189}{398}< -\frac{187}{394}\)
o) \(-\frac{289}{403}>-\frac{298}{401}\)
a: -15/37>-25/37
b: -13/21=-26/42
-9/14=-27/42
mà -26>-42
nên -13/21>-9/14
c: -49/-63=7/9
56/80=7/10
=>-49/-63>56/80
d: 3/14=1-11/14
4/15=1-11/15
mà 11/14>11/15
nên 3/14<4/15
a)7/12 và 4/9
`7/12 = 21/36 ; 4/9 = 16/36 `
Vì `21 > 16` nên `21/36 > 16/36 `
Vậy : ` 7/12 > 4/9 `
các câu còn lại tương tự
câu a)
\(\dfrac{7}{12}=\dfrac{63}{108};\dfrac{4}{9}=\dfrac{48}{108}\\ \Rightarrow\dfrac{63}{108}>\dfrac{48}{108}\\ \Rightarrow\dfrac{7}{12}>\dfrac{4}{9}\)
câu b)
\(\dfrac{25}{60}=\dfrac{3200}{7680};\dfrac{7}{16}=\dfrac{3360}{7680};\dfrac{3}{8}=\dfrac{2880}{7680}\\ \Rightarrow\dfrac{2880}{7680}< \dfrac{3200}{7680}< \dfrac{3360}{7680}\\ \Rightarrow\dfrac{3}{8}< \dfrac{25}{60}< \dfrac{7}{16}\)
câu c) vì số âm bé hơn số dương nên ⇒ -3/17 < 1/19
Bài làm:
Ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(A=\left[\left(1+\frac{1}{3}+...+\frac{1}{9}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\right]-\left[\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\right]\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)=B\)
Vậy A = B
\(a,\left(-2\right)^{300}=2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(\left(-3\right)^{200}=3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(\Leftrightarrow\left(-3\right)^{200}>\left(-2\right)^{300}\)
\(b,A=2^{19}.27^3+15.4^9.9^4\)