Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2001+2002}{2002+2003}< \dfrac{2001}{2002}+\dfrac{2002}{2003}\)
a) Ta có: \(1-\frac{2002}{2003}=\frac{1}{2003}\)
\(1-\frac{2003}{2004}=\frac{1}{2004}\)
Vì \(\frac{1}{2003}>\frac{1}{2004}\)
\(\Rightarrow\frac{2002}{2003}>\frac{2003}{2004}\)
b) Ta có: \(\frac{-2005}{-2004}=\frac{2005}{2004}>1\)
\(\frac{-2002}{2003}
\(\Rightarrow2A=2+2^2+2^3+...+2^{2003}\\ \Rightarrow2A-A=2+2^2+2^3+...+2^{2003}-1-2-...-2^{2002}\\ \Rightarrow A=2^{2003}-1=B\)
ai có lòng tick tôi lên 15 tôi cảm ơn nếu ko tick thì số đen sẽ đến với bn
A = 1 + 2 + 22 + 23 + ... + 22002
=> 2A = 2 + 22 + 23 + 24 + ... + 22003
=> 2A - A = ( 2 + 22 + 23 + 24 + ... + 22003 ) - ( 1 + 2 + 22 + 23 + ... + 22002 )
A = 22003 - 1 < 22003
hay A < B
Vậy ...
\(A=1+2+2^2+2^3+...+2^{2002}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2002}+2^{2003}\)
\(\Rightarrow2A-A=2^{2003}-1\)
\(\Rightarrow A=2^{2003}-1\)
Vì \(2^{2003}-1< 2^{2003}\)
nên A < B
Có:
- 2003A=20032004+2003/20032004+1 = 20032004+1+2002/20032004+1= 1+ 2002/20032004+1
- 2003A= 20032003+2003/20032003+1 .........= 1 + 2002/20032003+1
- Vì 1+ 2002/20032004+1<1+ 20022003+1nên 2003A<2003B
- Nên A<B
- !!!!!!!!!!!
A = 1 + 2 + 22 + ... + 22002
=> 2A = 2(1 + 2 + 22 + ... + 22002 )
= 2 + 22 + 23 + .... + 22003
2A - A = ( 2 + 22 + 23 + .... + 22003 ) - ( 1 + 2 + 22 + ... + 22002 )
A = 22003 - 1
Vì 22003 - 1 < 22003 nên A < B
Vậy A < B
Ta có \(B=2002^2\)
\(=2002.2002\)
\(=2002.\left(2003-1\right)\)
\(=2002.2003-2002>2003.2002-2003=2001.2003\)
Khi đó A < B
Vậy....
Mình cảm ơn nha :3