Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng:
a) Ta có: 102002+8 = 10...000 (2002 số 0) + 8 = 10...008 (2001 số 0) có 8 tận cùng nên chia hết cho 2 và tổng các chữ số của nó là: 1+0+...+0+0+8=9 nên chia hết cho 9
Vậy 102002 +8 chia hết cho 2 và 9.
b) Tương tự: = 10...014 (2002 số 0) có 4 tận cùng nên chia hết cho 2
và tổng các chữ số của nó là: 1+0+...+0+1+4=6 nên chia hết cho 3
Vậy 102004 +14 chia hết cho 2 và 3.
Giải:
a)Ta có:
C=1957/2007=1957+50-50/2007
=2007-50/2007
=2007/2007-50/2007
=1-50/2007
D=1935/1985=1935+50-50/1985
=1985-50/1985
=1985/1985-50/1985
=1-50/1985
Vì 50/2007<50/1985 nên -50/2007>-50/1985
⇒C>D
b)Ta có:
A=20162016+2/20162016-1
A=20162016-1+3/20162016-1
A=20162016-1/20162016-1+3/20162016-1
A=1+3/20162016-1
Tương tự: B=20162016/20162016-3
B=1+3/20162016-3
Vì 20162016-1>20162016-3 nên 3/20162016-1<3/20162016-3
⇒A<B
Chúc bạn học tốt!
Làm tiếp:
c)Ta có:
M=102018+1/102019+1
10M=10.(102018+1)/202019+1
10M=102019+10/102019+1
10M=102019+1+9/102019+1
10M=102019+1/102019+1 + 9/102019+1
10M=1+9/102019+1
Tương tự:
N=102019+1/102020+1
10N=1+9/102020+1
Vì 9/102019+1>9/102020+1 nên 10M>10N
⇒M>N
Chúc bạn học tốt!
a, A = 22001 + 2
A = \(\overline{200....2}\) (2001 chữ số 0)
Tổng các chữ số của A là : 2 + 0 x 2001 + 2 = 4 \(⋮̸\) 3; 9
A = \(\overline{..2}\) \(⋮\) 2; \(⋮̸\) 5
vậy 102001 + 2 chia hết cho 2 nhưng không chia hết cho 3; 5; 9
b, B = 102001 - 1
B = \(\overline{....9}\) \(⋮̸\) 2; 5
Tổng các chữ số của B là : 1 + 0 x 2001 + (-1) = 0 \(⋮\)3; 9
vậy 102001 - 1 chia hết cho 3; 9 nhưng không chia hết cho 2; 5
Ta có: (b=a+1)
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}-\frac{1}{a+1}\)
\(=\frac{\left(a+1\right)-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}=\frac{1}{ab}\)
k please!