Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{10}A=\dfrac{10^{2023}+5}{10^{2023}+50}=1-\dfrac{45}{10^{2023}+50}\)
\(\dfrac{1}{10}B=\dfrac{10^{2022}+5}{10^{2022}+50}=1-\dfrac{45}{10^{2022}+50}\)
10^2023+50>10^2022+50
=>-45/10^2023+50<-45/10^2020+50
=>1/10A<1/10B
=>A<B
\(10A=\dfrac{10^{2023}+10}{10^{2023}+1}=1+\dfrac{9}{10^{2023}+1}\)
\(10B=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)
2023>2022
=>10^2023+1>10^2022+1
=>10A<10B
=>A<B
A = \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2022}{50^8}\)
A = \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2021}{50^8}\) + \(\dfrac{1}{50^8}\)
B = \(\dfrac{2023}{50^{10}}\) + \(\dfrac{2021}{5^8}\) = \(\dfrac{2022}{50^{10}}\) + \(\dfrac{1}{50^{10}}\) + \(\dfrac{2021}{50^8}\)
Vì: \(\dfrac{1}{50^{10}}\) < \(\dfrac{1}{50^8}\) nên \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2021}{50^8}\) + \(\dfrac{1}{50^{10}}\) < \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2021}{50^8}\) + \(\dfrac{1}{50^8}\)
Vậy A > B
\(10A=\dfrac{10^{2023}+10}{10^{2023}+1}=1+\dfrac{9}{10^{2023}+1}\)
\(10B=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)
mà 10^2023+1>10^2022+1
nên A<B
Lời giải:
$10A=\frac{10^{2021}-10}{10^{2021}-1}=\frac{10^{2021}-1-9}{10^{2021}-1}$
$=1-\frac{9}{10^{2021}-1}>1$
$10B=\frac{10^{2022}+10}{10^{2022}+1}=\frac{10^{2022}+1+9}{10^{2022}+1}$
$=1+\frac{9}{10^{2022}+1}<1$
$\Rightarrow 10A> 1> 10B$
Suy ra $A> B$
A và B có phần mẫu số bằng nhau mà tử A có 10^2023 lớn hơn B có 10^2022 => A > B
10^2023>10^2022
=>10^2023+5>10^2022+5
=>A>B