K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2019

giúp mình với ạ !

6 tháng 6 2019

a)Ta có

    \(\sqrt{3}>0\)

       \(-12< 0\Rightarrow-12< \sqrt{3}\)

Chúc bạn

hok tốt

6 tháng 6 2019

a)Ta có

    \(\sqrt{3}>0\)

       \(-12< 0\Rightarrow-12< \sqrt{3}\)

Chúc bạn

hok tốt

27 tháng 6 2017

toan la toan chu ko phai phim hoat hinh

17 tháng 10 2018

ý của nhất sông núi là sao?

26 tháng 8 2018

\(\sqrt{29+12\sqrt{5}}+\sqrt{29-12\sqrt{5}}\)

\(=\sqrt{\left(2\sqrt{5}+3\right)^2}+\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(=\left|2\sqrt{5}+3\right|+\left|2\sqrt{5}-3\right|\)

\(=2\sqrt{5}+3+2\sqrt{5}-3=4\sqrt{5}\)

26 tháng 6 2021

\(\sqrt{29+12\sqrt{5}}+\sqrt{29-12\sqrt{5}}\)

\(\sqrt{29+2.2\sqrt{5}.3}+\sqrt{29-2.2\sqrt{5}.3}\)

\(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}.3+3^2}+\sqrt{\left(2\sqrt{5}\right)-2.2\sqrt{5}.3+3^2}\)

\(\sqrt{\left(2\sqrt{5}+3\right)^2}+\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(\left|2\sqrt{5}+3\right|+\left|2\sqrt{5}-3\right|\)

\(2\sqrt{5}+3+2\sqrt{5}-3\)

\(4\sqrt{5}\)

27 tháng 9 2017

a) Ta có: 
√2005 + √2003 > √2002 + √2000 
<=> 1/(√2005 + √2003) < 1/(√2002 + √2000) 
<=> 2/(√2005 + √2003) < 2/(√2002 + √2000) 
<=> (2005 - 2003)/(√2005 + √2003) < (2002 - 2000)/(√2002 + √2000) 
<=> √2005 - √2003 < √2002 - √2000 
<=> √2005 + √2000 < √2002 + √2003 

b) Tương tự câu a 
√(a + 6) + √(a + 4) > √(a + 2) + √a 
<=> 1/[√(a + 6) + √(a + 4)] < 1/[√(a + 2) + √a] 
<=> 2/[√(a + 6) + √(a + 4)] < 2/[√(a + 2) + √a] 
<=> [(a + 6) - (a + 4)/[√(a + 6) + √(a + 4)] < [(a + 2) - a]/[√(a + 2) + √a] 
<=> √(a + 6) - √(a + 4) < √(a + 2) - √a 
<=> √(a + 6) + √a < √(a + 4) + √(a + 2) 
đúng ko ?

27 tháng 9 2017

hình như nó sai cái gì a

13 tháng 8 2020

Ta giả sử \(4\) và \(\sqrt{7}\) (*) là \(a\) và \(b\left(a,b>0\right)\) thì ta có điều hiển nhiên sau : \(a+b>a-b\)

Đặt căn ở hai bên ta được : \(\sqrt{a+b}>\sqrt{a-b}\)

Thế (*) vào ta được : \(\sqrt{4+\sqrt{7}}>\sqrt{4-\sqrt{7}}\)

Do VT > VP nên trừ ở VP đi một số thực dương sẽ không đổi chiều dấu 

Nên ta suy ra được \(\sqrt{4+\sqrt{7}}>\sqrt{4-\sqrt{7}}-\sqrt{2}\)

Hay viết cách khá là \(A>B\)

13 tháng 8 2020

A=Căn ( 4 + căn 7) ...... B= Căn ( 4 - Căn 7 ) - Căn 2
xét:
Nếu A < B
Thì Căn (4 + căn 7) > Căn (4 - Căn7) - Căn 2
Nếu Căn (4+ căn 7) = 0
Thì Căn (4+Căn7) - Căn 2 = 0
Mà B= Căn (4 - Căn 7) ( Tức nhỏ hơn Căn (4 + căn 7)
=> A > B