Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chữ số tận cùng của A =3 vì 20162017+20172016=4...3
a) Ta có: 2017 2016 = 1 + 1 2016 ; 2019 2018 = 1 + 1 2018 . Vì 1 2016 > 1 2018 nên 2017 2016 > 2019 2018
b) Ta có: 73 64 = 1 + 9 64 ; 51 45 = 1 + 6 45 . Vì 9 64 = 18 128 > 6 45 = 18 135 nên 73 64 > 51 45
Ta thấy:
A = \(\frac{20162017}{20162016}\) và B = \(\frac{20152016}{20152015}\)
A = \(\frac{20162016}{20162016}\)+ \(\frac{1}{20162016}\) = \(1\) + \(\frac{1}{20162016}\)
B = \(\frac{20152015}{20152015}\) + \(\frac{1}{20152015}\)= \(1\) + \(\frac{1}{20152015}\)
Vì: \(\frac{1}{20162016}\) \(< \) \(\frac{1}{20152015}\)
Nên: \(A\) \(< \) \(B\)
~ HokT~
\(A=1+2+2^2+...+2^{2015}>2^{2015}=B\)
\(\Rightarrow A>B\)
P.s: đề sai đúng ko bạn :v
2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)
\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)
Nên suy ra \(10A>10B\Rightarrow A>B\)