Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{200}=\left(5^2\right)^{100}=25^{100}\)
\(3< 25=>3^{100}< 25^{100}=>3^{100}< 5^{200}\)
\(\frac{75^{20}}{45^{10}.25^{15}}=\frac{25^{20}.3^{20}}{3^{10}.3^{10}.5^{10}.25^{15}}=\frac{25^{20}}{25^5.25^{15}}=1\)
\(=>75^{20}=45^{10}.25^{15}\left(dpcm\right)\)
P/S:nếu a=b=>a:b=1 mk làm theo cách đó cho nhanh mà bn ghi sai đề r
Ta có : \(3^{75}=3^{3.25}=\left(3^3\right)^{25}=27^{25}\)
\(2^{100}=2^{4.25}=\left(2^4\right)^{25}=16^{25}\)
Vì \(27>16\)
\(\Rightarrow\)\(27^{25}>16^{25}\)
\(\Rightarrow\)\(3^{75}>2^{100}\)
Vậy \(3^{75}>2^{100}\)
Tk nha ! Happy ♡♡♡
Ta có :
\(2^{100}=\left(2^4\right)^{25}=16^{25}\)
\(3^{75}=\left(3^3\right)^{25}=27^{25}\)
Có \(27>16\)
\(\Rightarrow\)\(27^{25}>16^{25}\)
Hay \(3^{75}>2^{100}\)
P = 1 + 32 + 34 + 36+......+3100
32 P= 32(1 + 32 + 34 + 36+......+3100)
32P= 32 + 34 + 36+......+3100+3102
32P= (32 + 34 + 36+......+3100+3102)- (1 + 32 + 34 + 36+......+3100 )
32 P= 3102 - 1
P= (3102 -1) :9
Q = (917)3 / 23
Q = 951 / 8
Q = (32)51 /8
Q = 3102 /8
Q= 3102 :8
=> P > Q
Vậy...
K chắc nha b
xét P=1+3^2+3^4+3^6+3^8+....+3^100
=> 3^2.P=3^2+3^4+3^6+3^8+3^10+...+3^102
9.P-P=(3^2+3^4+3^6+3^8+3^10+...+3^102)-(1+3^2+3^4+3^6+3^8+....+3^100)
8P=3^102-1
P=\(\frac{3^{102}-1}{8}\)
Xét Q :
\(\left(\frac{9^{17}}{2}\right)^3=\left[\frac{\left(3^2\right)^{17}}{2}\right]^3=\frac{\left(3^{34}\right)^3}{8}=\frac{3^{102}}{8}\)
mà 3^102-1<3^102
=>P<Q
Ta có :
3230 = ( 25 )30 = 2150
975 = ( 32 )75 = 3150
Vì 2150 < 3150 nên 3230 < 975
Vậy 3230 < 975
tacó
32^30=(2^5)^30=2^150
9^75=(3^2)^75=3^150
mà2^150<2^150nên32^30<9^75
a) \(2^{135}=2^{3.45}=\left(2^3\right)^{45}=8^{45}\)
\(3^{90}=3^{2.45}=\left(3^2\right)^{45}=9^{45}\)
Vì \(8^{45}< 9^{45}\)nên \(2^{135}< 3^{90}\)
b) \(4^{75}=4^{3.25}=\left(4^3\right)^{25}=64^{25}\)
\(3^{100}=3^{4.25}=\left(3^4\right)^{25}=81^{25}\)
Vì \(64^{25}< 81^{25}\)nên \(4^{75}< 3^{100}\)
c) \(4^{100}=4^{4.25}=\left(4^4\right)^{25}=256^{25}\)
\(9^{75}=9^{3.25}=\left(9^3\right)^{25}=729^{25}\)
Vì \(256^{25}< 729^{25}\)nên \(^{4^{100}< 9^{75}}\)