Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{7^5}{7+7^2+7^3+7^4}=\dfrac{7^5}{\left(7+7^4\right)+\left(7^2+7^3\right)}=\dfrac{7^5}{7^5+7^5}=7^5\)
\(B=\dfrac{5^5}{5+5^2+5^3+5^4}=\dfrac{5^5}{\left(5+5^4\right)+\left(5^2+5^3\right)}=\dfrac{5^5}{5^5+5^5}=5^5\)
Vì 7 > 5 nên \(7^5>5^5\)
Vậy A > B
(Nhớ cho mik một tick nha cảm ơn bạn nhìu :3)
\(\dfrac{97}{100}\) và \(\dfrac{98}{99}\)
\(\dfrac{97}{100}=\dfrac{97\times99}{100\times99}=\dfrac{9603}{9900}\)
\(\dfrac{98}{99}=\dfrac{98\times100}{99\times100}=\dfrac{9800}{9900}\)
Vì: \(9603< 9800\) nên => \(\dfrac{97}{100}< \dfrac{98}{99}\)
\(\dfrac{13}{17}\) và \(\dfrac{131}{171}\)
\(\dfrac{13}{17}=\dfrac{13\times171}{17\times171}=\dfrac{2223}{2907}\)
\(\dfrac{131}{171}=\dfrac{131\times17}{171\times17}=\dfrac{2227}{2907}\)
Vì: \(2227>2223\) nên: => \(\dfrac{13}{17}< \dfrac{131}{171}\)
\(\dfrac{51}{61}\) và \(\dfrac{515}{616}\)
\(\dfrac{51}{61}=\dfrac{51\times616}{61\times616}=\dfrac{31416}{37576}\)
\(\dfrac{515}{616}=\dfrac{515\times61}{616\times61}=\dfrac{31415}{37576}\)
Vì: \(31416>31415\) Nên => \(\dfrac{51}{61}>\dfrac{515}{616}\)
\(99^{100}:11=99.99^{99}:11=9^{99}.\left(99:11\right)=9.9^{99}\).
Vì vậy:
\(99^{100}:11=9.99^{99}=99^{99}+99^{99}+99^{99}+99^{99}+99^{99}+99^{99}+99^{99}+99^{99}+99^{99}\)\(>98^{99}+97^{99}+96^{99}+95^{99}+94^{99}+93^{99}+92^{99}+91^{11}\).
\(\dfrac{72}{-73}=-0,98\)
\(\dfrac{98}{-99}=-0,98\)
\(\Rightarrow\dfrac{72}{-73}=\dfrac{98}{-99}\)
có cách nào khác ko ạ