Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 20 + 21 + 22 + 23 + ... + 250
2A = 21 + 22 + 23 + 24 + ... + 251
2A - A = (21 + 22 + 23 + 24 + ... + 251) - (20 + 21 + 22 + 23 + ... + 250)
A = 251 - 20
A = 251 - 1 < 251
Vậy 20 + 21 + 22 + 23 + ... + 250 < 251
Ủng hộ mk nha ^_-
a, Ta có : \(9^{2000}=\left(3^2\right)^{2000}=3^{4000}\)
Mà \(3^{4000}=3^{4000}\)
\(\Rightarrow3^{4000}=9^{2000}\)
Vậy \(3^{4000}=9^{2000}\)
b, Ta có : \(2^{332}< 2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\)
\(\Rightarrow2^{333} < 3^{222}\)
\(\Rightarrow2^{332}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
a) \(3^{4000}\) và \(9^{2000}\)
ta có:\(9^{2000}=\left(3^2\right)^{2000}=9^{2000}\)
=>\(9^{2000}=9^{2000}\Leftrightarrow3^{4000}=9^{2000}\)
b)\(2^{332}\) và \(3^{223}\)
\(2^{332}\) <\(2^{333}\) mà \(2^{333}=\left(2^3\right)^{111}=8^{111}\)(1)
\(3^{223}\) >\(3^{222}\) mà \(3^{222}=\left(3^2\right)^{111}=9^{111}\)(2)
từ (1 và 2),suy ra:8111<9111 hay 2332<3223
câu a ta so sánh số đối của 2 phân số này.nếu ps nào có giá trị tuyệt đối lớn hơn thì nhỏ hơn.
câu b ta nhân cả A và B với 2009 rồi so sánh 2009A với 2009B.ta được A>B
Ta có: 2300 = (23)100 = 8100
2550 = (52)50 = 5100
Vì 8 > 5 nên 8100 > 5100
Vậy 2300 > 2550
so sánh
ta có
333444=3334.111=(3334)111
444333=4443.111=(4443)111
So sánh 3334và 4443 ta có
3334=(3.111)4=34 . 1114=81.1114
4443=(4.111)3=43. 1113=64. 1113
Vì 81.1114>64.1113
Suy ra 333444>444333
ta có 2^603=(2^3)^201=8^201
3^402=(3^2)^201=9^201
vì 8^201<9^201=> 2^603<3^402
Ta có :
\(2^{603}=\left(2^3\right)^{201}=8^{201}\)
\(3^{402}=\left(3^2\right)^{201}=9^{201}\)
Mà \(8< 9\)
=>\(8^{201}< 9^{201}\)
Hay \(2^{603}< 3^{402}\)
Vậy ...
\(\frac{2}{3}^{50}=\frac{2}{3}^{45}x\frac{2}{3}^5\)
\(\frac{2}{3}^5=\frac{2}{3}.\frac{2}{3}.\frac{2}{3}.\frac{2}{3}.\frac{2}{3}=\frac{32}{243}\)
Đến đây bạn tự làm nhé