Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left\{{}\begin{matrix}2^{24}=\left(2^3\right)^8=8^8\\3^{16}=\left(3^2\right)^8=9^8\end{matrix}\right.\)
Thấy : \(9>8\)
\(\Leftrightarrow9^8>8^8\)
\(\Leftrightarrow3^{16}>2^{24}\)
Vậy ...
Siêu tốc thần sầu
\(VP=2^{30}+3^{30}+4^{30}\ge3\sqrt[3]{\left(2.3.4\right)^{3.10}}=3.24^{10}=VT\)
VP=230+330+430
VP= 230+330+430\(\ge\)\(3^3\sqrt{\left(2.3.4\right)^{3.10}}\)=\(3\cdot24^{10}\)
VP=VT
\(\Rightarrow\)230+330+430\(\ge\)\(3\cdot24^{10}\)
\(2^{24}=(2^3)^8=8^8\)
\(3^{16}=\left(3^2\right)^8=9^8\)
vì \(8^8< 9^8\Rightarrow2^{24}< 3^{16}\)
\(2^{24}=\left(2^3\right)^8=8^8\)
\(3^{16}=\left(3^2\right)^8=9^8\)
\(8< 9\)
\(\Rightarrow8^9< 9^9\)
\(\Rightarrow2^{24}< 3^{16}\)
`@` `\text {Ans}`
`\downarrow`
Ta có:
\(5^{333}=\left(5^3\right)^{111}=125^{111}\)
\(11^{222}=\left(11^2\right)^{111}=121^{111}\)
Vì `125 > 121 =>`\(125^{111}>121^{111}\)
`=>`\(5^{333}>11^{222}\)
Vậy, \(5^{333}>11^{222}\)
_____
`@` So sánh lũy thừa cùng cơ số:
Nếu `m > n =>`\(a^m>a^n\left(m,n\ne0,a>1\right)\)
`@` So sánh lũy thừa cùng số mũ:
Nếu `a > b =>`\(a^m>b^m\left(a,b>1,m\ne0\right)\)
`@` `\text {Kaizuu lv uuu}`
ta có
2^24=(2^3)^8=8^8 (1)
5^16=(5^2)^8=25^8 (2)
từ (1);(2)suy ra 5^16>2^24
ta có: 2^24=8^8
5^16=10^8
=>8^8<10^8=>2^24<5^16