Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=2019\cdot2021=2020^2-1\)
\(B=2020^2\)
Do đó: A<B
2.So sánh 23100 va 32100
\(2^{3100}=\left(2^{31}\right)^{100}\)
\(3^{2100}=\left(3^{21}\right)^{100}\)
Vậy \(63^{100}=63^{100}\)
k nha
23100 < 32100
ủng hộ nha! 56767657585643634665756756834534645
Ta có: 3A = 3.(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−1
⇒ A = 3101−1
2
Vậy A = 3101−1
2
a) \(5^{x+2}-5^{x-1}=3100\) \(\Leftrightarrow5^x.5^2-5^x:5=3100\)
\(\Leftrightarrow5^x.25-5^x.\frac{1}{5}=3100\)\(\Leftrightarrow5^x.\left(25-\frac{1}{5}\right)=3100\)
\(\Leftrightarrow5^x.\frac{124}{5}=3100\)\(\Leftrightarrow5^x=125=5^3\)\(\Leftrightarrow x=3\)
Vậy \(x=3\)
b) \(\left(x-4\right)\left(2x+3\right)< 0\)
TH1: \(\hept{\begin{cases}x-4>0\\2x+3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\2x< -3\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< \frac{-3}{2}\end{cases}}\)( vô lý )
TH2: \(\hept{\begin{cases}x-4< 0\\2x+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 4\\2x>-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 4\\x>\frac{-3}{2}\end{cases}}\Leftrightarrow\frac{-3}{2}< x< 4\)
mà x là số nguyên \(\Rightarrow-1< x< 4\)
Vậy \(-1< x< 4\)
\(2^{150}=\left(2^3\right)^{50}=8^{50}\)
\(3^{100}=\left(3^2\right)^{50}=9^{50}\)
\(9^{50}>8^{50}=>3^{100}>2^{150}\)
So sánh 2150 và 3100
2^150=(2^3^)50=8^50
3 100=(32)50=9^50
9^50>8^50=>3^100>2^150