Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2019\cdot2019\)
\(B=2017\cdot2021=\left(2019-2\right)\left(2019+2\right)=2019\cdot2019+2019\cdot2-2019\cdot2-2\cdot2=2019\cdot2019-2\cdot2\)
Vậy A > B
\(A=2018\times2020+2021\) và \(B=2019\times2019+2021\)
\(A=2018\times2019+2018+2021\)
\(B=2018\times2019+2019+2021\)
Vì \(2019>2018\Rightarrow A< B\)
ta có :
\(A=\frac{2017}{2019}+\frac{1}{2}=1-\frac{2}{2019}+1-\frac{1}{2}< 1-\frac{2}{2021}+1-\frac{1}{3}=\frac{2019}{2021}+\frac{2}{3}=B\)
Vậy A<B ta chọn đáp án C
Có: \(\dfrac{2019}{2021}=1-\dfrac{2}{2021}\)
\(\dfrac{2020}{2022}=1-\dfrac{2}{2022}\)
Mà \(\dfrac{2}{2021}>\dfrac{2}{2022}\Rightarrow1-\dfrac{2}{2021}< 1-\dfrac{2}{2022}\Rightarrow\dfrac{2019}{2021}< \dfrac{2020}{2022}\)
`a,`
`5/6=1-1/6`
`7/8=1-1/8`
Mà `1/6>1/8 -> 5/6<7/8`
`b,`
`9/5=(9 \times 2)/(5 \times 2)=18/10`
`3/2=(3 \times 5)/(2 \times 5)=15/10`
`18/10 > 15/10 -> 9/5 > 3/2`
`c,`
`2017/2018 = 1-1/2018`
`2019/2020=1-1/2020`
`1/2018 > 1/2020 -> 2017/2018 < 2019/2020`
`d,`
`2018/2017 = 1+1/2017`
`2020/2019 = 1+1/2019`
`1/2017 > 1/2019 -> 2018/2017>2020/2019`
Ta có M=2019/2020+2020/2021+2021/2019
=>M=(1-1/2020)+(1-1/2021)+(1+2/2019)
=(1+1+1)+(2/2019-1/2020-1/2021)
=3+(1/2019+1/2019-1/2020-1/2021)
=3+(1/2019-1/2020)+(1/2019-1/2021)>3
Do 1/2019-1/2020>0
và 1/2019-1/2021>0
=>B>3
Vậy B>3
k cho mk nha
hok tốt=)))
\(\dfrac{2021}{2019}=1+\dfrac{2}{2019}\)
2019/2017=1+2/2017
mà 2/2019<2/2017
nên 2021/2019<2019/2017