Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5-\sqrt{5}.\sqrt{3}=5-\sqrt{5.3}=5-\sqrt{15}\)
\(1=5-4=5-\sqrt{16}\)
-Vì \(-\sqrt{15}>-\sqrt{16}\) nên \(5-\sqrt{15}>5-\sqrt{16}\)
\(\Rightarrow5-\sqrt{5}.\sqrt{3}>1\)
\(2\sqrt{3+\sqrt{5}}=\sqrt{2}\cdot\sqrt{6+2\sqrt{5}}\)
\(=\sqrt{2}\cdot\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{2}\cdot\left(\sqrt{5}+1\right)\)
\(=\sqrt{10}+\sqrt{2}>\sqrt{10}+1\)
Vậy ....
a) Ta có \(5=\sqrt{25}\)
Vì \(\sqrt{25}>\sqrt{11}\) nên \(5>\sqrt{11}\)
b) Ta có \(4=\sqrt{16}\)
Vì \(\sqrt{13}< \sqrt{16}\) nên \(\sqrt{13}< 4\)
c) Ta có \(-7=-\sqrt{49}\)
Vì \(-\sqrt{49}< -\sqrt{43}\) nên \(-7< -\sqrt{43}\)
d) Ta có \(-5=-\sqrt{25}\)
Vì \(-\sqrt{21}>-\sqrt{25}\) nên \(-\sqrt{21}>-5\)
\(A=\sqrt{6+\sqrt{6+\sqrt{6}}}+\sqrt{2+\sqrt{2+\sqrt{2}}}\)
\(A< \sqrt{6+\sqrt{6+\sqrt{9}}}+\sqrt{2+\sqrt{2+\sqrt{4}}}\)
\(=\sqrt{6+\sqrt{6+3}}+\sqrt{2+\sqrt{2+2}}\)
\(=\sqrt{6+\sqrt{9}}+\sqrt{2+\sqrt{4}}\)
\(=\sqrt{6+3}+\sqrt{2+2}\)
\(=\sqrt{9}+\sqrt{4}\)
\(=3+2=5=B\)
Vậy A < B
Chúc bạn học tốt !!!
\(A^2=3940+2\cdot\sqrt{1970^2-1}\)
\(B^2=3940+2\cdot\sqrt{1970^2}\)
mà \(1970^2-1< 1970^2\)
nên A<B
Còn thêm cách nào khác ko ạ? Nếu có thì giúp em nha. Cảm ơn anh nhiều!
>
<
Tik nha bn có cần cách làm ko? Nhân tiện chúc bn năm ms zui zẻ