Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{2}{\sqrt{17}+\sqrt{15}}\) ; \(B=\dfrac{2}{\sqrt{15}+\sqrt{13}}\)
Mà \(\sqrt{17}+\sqrt{15}>\sqrt{15}+\sqrt{13}>0\)
\(\Rightarrow\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{15}+\sqrt{13}}\)
\(\Rightarrow A< B\)
\(A=\sqrt{17}-\sqrt{15}=\dfrac{2}{\sqrt{17}+\sqrt{15}}\)
\(B=\sqrt{15}-\sqrt{13}=\dfrac{2}{\sqrt{13}+\sqrt{15}}\)
mà \(\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{13}+\sqrt{15}}\)
nên A<B
Lời giải:
a)
$(\sqrt{2}+\sqrt{3})^2=5+2\sqrt{6}=10-(2+3-2\sqrt{6})$
$=10-(\sqrt{2}-\sqrt{3})^2\leq 10$
$\Rightarrow \sqrt{2}+\sqrt{3}< \sqrt{10}$
b)
$\sqrt{15}.\sqrt{17}=\sqrt{15.17}=\sqrt{(16-1)(16+1)}=\sqrt{16^2-1}< \sqrt{16^2}=16$
c)
$(\sqrt{3}+2)^2=7+4\sqrt{3}$
$(\sqrt{2}+\sqrt{6})^2=8+4\sqrt{3}$
$\Rightarrow (\sqrt{3}+2)^2< (\sqrt{2}+\sqrt{6})^2$
$\Rightarrow \sqrt{3}+2< \sqrt{2}+\sqrt{6}$
d)
$(\sqrt{15}+\sqrt{17})^2=32+2\sqrt{15.17}< 32+2.16=64$ (theo kết quả câu b)
$\Rightarrow \sqrt{15}+\sqrt{17}< \sqrt{64}=8$
a/ \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2.3}=5+2\sqrt{6}=5+\sqrt{24}\)
\(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)
Vì \(\sqrt{24}< \sqrt{25}\)
=>\(\sqrt{2}+\sqrt{3}< \sqrt{10}\)
b/\(\left(\sqrt{3}+2\right)^2=3+4+4\sqrt{3}=7+4\sqrt{3}\)
\(\left(\sqrt{2}+\sqrt{16}\right)^2=2+16+2\sqrt{2.16}=18+4\sqrt{8}\)
=> \(\sqrt{3}+2< \sqrt{2}+\sqrt{16}\)
c/ \(16=\sqrt{16^2}\)
\(\sqrt{15}.\sqrt{17}=\sqrt{15.17}=\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\)
=> \(16>\sqrt{15}.\sqrt{17}\)
d/\(8^2=64=32+32=32+2\sqrt{256}\)
\(\left(\sqrt{15}+\sqrt{17}\right)^2=15+17+2\sqrt{15.17}=32+2\sqrt{255}\)
=> \(8>\sqrt{15}+\sqrt{17}\)
b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)
\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)
mà 80>75
nên \(4\sqrt{5}>5\sqrt{3}\)
Bài 1:
Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)
Số giá trị nguyên thỏa mãn điều kiện là:
\(\left(2+4\right)+1=7\)
8 lớn hơn \(\sqrt{15}\)+\(\sqrt{17}\)
vì \(\sqrt{15}\)+\(\sqrt{17}\)=7,997,,
16>căn 15 nhân căn 17, do can 5 nhan can 17 =15,968........<16
chúc bn học tốt!!!!!!!
Ta có \(256>255\Leftrightarrow256>15.17\)
\(\Leftrightarrow\sqrt{256}>\sqrt{15.17}\)
\(\Leftrightarrow16>\sqrt{17}.\sqrt{15}\)