Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n+1 chia hết cho n+2
=> 2n+4-3 chia hết cho n+2
Vì 2n+4 chia hết cho n+2
=> -3 chia hết cho n+2
=> n+2 thuộc Ư(-3)
=> n+2 thuộc {1; -1; 3; -3}
=> n thuộc {-1; -3; 1; -5}
2n+1=2n+4-3
=> 2n+1 chia hết cho n+2 khi 3 chia hết cho n+2
mà n là số tự nhiên nên n+2 lớn hơn hoặc bằng 2
=>n+2 =3
=>n=1
Bài này hay thật mình thì chỉ nghĩ ra mỗi cách này. Nhưng ko biết vs học phô thông thì tư duy thế nào
1 số chính phương có tận cùng bằng 0,1,4,5,6,9
N+1 tận cùng =9=> n tận cùng bằng 8 => 2n+1 tận cùng =7 => loại
(2n+1)-(n+1)=n=a^2-b^2=(a-b)(a+b)
2n+1 là số lẻ => a lẻ
N chẵn=> b chẵn
1 số chính phương chia cho 4 dư 0 hoặc 1 => (a+b)(a-b) chia hết cho 8
Còn nó chia hết cho 3 hay không thì phải dùng định lý của fermat đẻ giải
http://en.wikipedia.org/wiki/Fermat%27s_little_theorem
như vậy chưng minh no chia het cho 8 và 3 là có thể két luạn nó chia hêt cho 24
Bạn xem thêm ở đây: Câu hỏi của lê phát minh - Toán lớp 7 - Học toán với OnlineMath
Vì 2n+1 là số chính phương lẻ nên
2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4
Do đó n+1 cũng là số lẻ, suy ra
n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8
Lại có
(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2
Ta thấy
3n+2≡2(mod3)3n+2≡2(mod3)
Suy ra
(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên
n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)
Do đó
n⋮3n⋮3
Vậy ta có đpcm.
Ta có: (2n+1) chia hết cho(n+2)
=> 2n + 4 - 3 chia hết cho n + 2
=> 2.(n + 2) - 3 chia hết cho n + 2
=> 3 chia hetes cho n + 2
=> n + 2 thuộc Ư(3) = {-1;1-3;3}
Ta có:
Vì là giá trị nhỏ nhất nên n = -5