Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n chia 11 dư 6, chia 17 dư 12, chia 29 dư 24 => n chia 11;17;29 đều thiếu 5
=>n+5 chia hết cho 11;17;29
Vì n nhỏ nhất =>n+5 là BCNN(11;17;29)
Vì 11;17;29 nguyên tố cùng nhau
=>n+5= BCNN(11;17;29)=11x17x29=5423
=>n=5423-5=5418
b) Gọi số tự nhiên cần tìm là x
x chia 13 dư 8, chia 19 dư 14 => x chia 13;19 đều thiếu 5
=> x+5 chia hết cho 13;19 Vì x nhỏ nhất => x+5 là BCNN(13;19)
Vì 13;19 nguyên tố cùng nhau
=> x+5=BCNN(13;19)=13x19=247
=> x+5 thuộc B(247)={0;247;494;741;988;1235;1482;...}
Để có số tận cùng là 7 => x+5 tận cùng là 2 => x+5=1482
x=1482-5
x=1477
1) Chia cho 8 dư 6 là 190;chia 12 dư 10 là 286;chia 15 dư 13 là 358 . 2)Số tự nhiên nhỏ nhất khi chia cho 3;4;5 có số dư theo thứ tự 1;3;1 là 4;7;6. Mình ko chắc đâu nha!!!
câu 1 sai đề đúng ko bạn
phải là cái này mới đúng :1)tìm số tự nhiên nhỏ nhất khi chia cho 8 dư 6;chia 12 dư 10;chia 15 dư 16 và chia hết cho 23
Gọi số đó là a (đk : a > 0)
Ta có : \(\hept{\begin{cases}a:8\text{ dư 7}\\a:9\text{ dư 8}\\a:12\text{ dư 11}\end{cases}}\Rightarrow\hept{\begin{cases}a+1⋮8\\a+1⋮9\\a+1⋮12\end{cases}}\Rightarrow a+1\in BC\left(8;9;12\right)\)
=> a + 1 \(\in\)BCNN(8;9;12) (Vì a là số nhỏ nhất có thể)
Mà 8 = 23
9 = 32
12 = 22.3
=> BCNN(8;9;12) = 23.32 = 8.9 = 72
=> a + 1 = 72
=> a = 71
Vậy số cần tìm là 71
Gọi số cần tìm là a :
a chia 8 dư 7 ; chia 9 dư 8 ; chia 12 dư 11
\(\Rightarrow a+1⋮\) 8 ; 9 và 12
\(8=2^3\)
\(9=3^2\)
\(12=2^2\cdot3\)
\(BCNN\left(8;9;12\right)=2^3\cdot3^2=8\cdot9=72\)
\(\Rightarrow a+1=72\)
\(a=71\)