K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2015

4 nghiệm
-1; 2; 3; 6

15 tháng 4 2017

https://h.vn/hoi-dap/question/238231.html?pos=815256

Chọn B

17 tháng 9 2018

b) Đặt x 2  = t (t ≥ 0). Khi đó ta có phương trình: t 2  – mt – m – 1 = 0 (*)

Δ =  m 2  - 4(-m - 1) = m 2  + 4m + 4 = m + 2 2

Phương trình đã cho có 4 nghiệm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm dương phân biệt

Đề kiểm tra Toán 9 | Đề thi Toán 9

17 tháng 6 2016
a) ax^2 + bx + c = 0 Để phương trình thỏa mãn điều kiện có 2 nghiệm dương phân biệt. ∆ > 0 => b^2 - 4ac > 0 x1 + x2 = -b/a > 0 => b và a trái dấu x1.x2 = c/a > 0 => c và a cùng dấu Từ đó ta xét phương trình cx^2 + bx^2 + a = 0 ∆ = b^2 - 4ac >0 x3 + x4 = -b/c, vì a và c cùng dấu mà b và a trái dấu nên b và c trái dấu , vì vậy -b/c >0 x3.x4 = a/c, vì a và c cùng dấu nên a/c > 0 => phương trình cx^2 + cx + a có 2 nghiệm dương phân biệt x3 và x4 Vậy nếu phương trình ax^2 + bx + c = 0 có 2 nghiệm dương phân biệt thì phương trình cx^2 + bx + a = 0 cũng có 2 nghiệm dương phân biệt. b) Ta có, vì x1, x2, x3, x4 không âm, dùng cô si. x1 + x2 ≥ 2√( x1.x2 ) x3 + x4 ≥ 2√( x3x4 ) => x1 + x2 + x3 + x4 ≥ 2[ √( x1.x2 ) + √( x3x4 ) ] (#) Tiếp tục côsi cho 2 số không âm ta có √( x1.x2 ) + √( x3x4 ) ≥ 2√[√( x1.x2 )( x3.x4 ) ] (##) Theo a ta có x1.x2 = c/a x3.x4 = a/c => ( x1.x2 )( x3.x4 ) = 1 => 2√[√( x1.x2 )( x3.x4 ) ] = 2 Từ (#) và (##) ta có x1 + x2 + x3 + x4 ≥ 4
31 tháng 10 2018

Đáp án B

7 tháng 7 2017

25x2 + 10x + 1 = 0

Có a = 25 ; b = 10 ; c = 1

Δ = b2 – 4ac = 102 – 4.25.1 = 0

Khi đó theo hệ thức Vi-et có:

    x1 + x2 = -b/a = -10/25 = -2/5

    x1.x2 = c/a = 1/25.

22 tháng 5 2018

Phương trình (1) vô nghiệm khi phương trình (2) có 2 nghiệm số âm hoặc vô nghiệm.

Nếu phương trình (2) có 2 nghiệm âm thì theo hệ thức Vi-ét ta có:

t 1 + t 2  = 13 > 0 vô lý

Vậy phương trình (1) vô nghiệm khi phương trình (2) vô nghiệm.

Suy ra: ∆ = 169 - 4m < 0 ⇔ m > 169/4}

27 tháng 2 2018

Phương trình (1) có một nghiệm khi phương trình (2) có 1 nghiệm số kép bằng 0 hoặc phương trình (2) có một nghiệm bằng 0 và một nghiệm số âm.

Ta thấy, với ∆ = 0 phương trình (2) có nghiệm số kép t 1  =  t 2  = 13/2 ≠ 0( không thỏa mãn)

Nếu phương trình (2) có một nghiệm t1 = 0. Theo hệ thức Vi-ét ta có:

t 1  +  t 2  = 13 ⇔  t 2  = 13 -  t 1  = 13 - 0 = 13 > 0 ( không thỏa mãn)

Vậy không có giá trị nào của m để phương trình (1) chỉ có 1 nghiệm.

14 tháng 11 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Phương trình (1) có ba nghiệm phân biệt khi phương trình (2) có 1 nghiệm số dương và 1 nghiệm bằng 0 khi:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

15 tháng 2 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Phương trình (1) có hai nghiệm phân biệt khi phương trình (2) có nghiệm kép hoặc có 1 nghiệm dương và một nghiệm âm.

Phương trình (2) có một nghiệm số kép khi và chỉ khi Δ = 169 - 4m = 0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Phương trình (2) có một nghiệm số dương và một nghiệm số âm khi

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy với m = 169/4 hoặc m < 0 thì phương trình (1) có 2 nghiệm phân biệt.