Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mik sẽ dùng tỉ lệ thức nhé
Bài 1: Gọi độ dài hai cạnh liên tiếp của HCN đó lần lượt là a, b (\(a,b\inℕ^∗;a< b\))
Ta có: \(\frac{a}{b}=\frac{2}{3}\Rightarrow\frac{a}{2}=\frac{b}{3}\)
(a+b).2= 40
=> a+b = 40:2
=> a+b = 20 (cm)
Áp dụng t/c của dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{a+b}{2+3}=\frac{20}{5}=4\)
Suy ra: a = 4.2 = 8 (cm)
b = 4.3 = 12 (cm)
Vậy diện tích HCN đó là: 8.12 = 96 (cm2 )
Bài 2: Gọi số sản phẩm làm được của công nhân thứ nhất và công nhân thứ hai lần lượt là a, b (\(a,b\inℕ^∗\))
Ta có: \(\frac{a}{b}=0,8=\frac{4}{5}\Rightarrow\frac{a}{4}=\frac{b}{5}\)
b-a = 50
Áp dụng t/c của dãy TSBN ta có:
\(\frac{b}{5}=\frac{a}{4}=\frac{b-a}{5-4}=\frac{50}{1}=50\)
Suy ra: a = 50. 4 = 200 (sản phẩm)
b = 50 .5 = 250 (sản phẩm)
Vậy công nhân thứ nhất làm được 200 sản phẩm
công nhân thứ hai làm được 250 sản phẩm
tham khảo :Tìm nghiệm nguyên dương của phương trình sau : 5(x+y+z+t)+10=2xyzt
vì vai trò x,y,z,t như nhau nên \(x\ge y\ge z\ge t\)
khi đó 2xyzt=5(x+y+z+t)+10\(\le\)20x+10
⇒yzt\(\le\)15⇒t3\(\le\)15⇒t\(\le\)2Với t = 1 ta có : 2xyz = 5(x + y + z) +15 ≤ 15x + 15 ⇒2yz\(\le\)30⇒2z2\(\le\)30⇒z\(\le\)3Nếu z = 1 thì 2xy = 5(x + y) + 20 hay 4xy = 10(x + y) + 40 hay (2x – 5)(2y – 5) = 65 .
Dễ thấy rằng phương trình này có nghiệm là (x = 35; y = 3) và (x = 9; y = 5).
Giải tương tự cho các trường còn lại và trường hợp t=2. Cuối cùng ta tìm được nghiệm nguyên dương của phương trình đã cho là (x;y;z;t)=(35;3;1;1);(9;5;1;1) và các hoán vị của các bộ số này.
Mình ví dụ cho bạn hiểu
\(a\ge0\Rightarrow\left|a\right|=a\)
Ví dụ : | 5 | = 5 ; | 0 | = 0 ; ...
a < 0 => | a | = -a
Ví dụ : | -6 | = -(-6) = 6 ; | -99 | = -(-99) = 99
Tóm lại GTTĐ của một số luôn lớn hơn hoặc bằng 0 ._.
1 đinh ốc tiện trong số phút là :
\(\frac{30}{45}=\frac{2}{3}\)( phút )
1 h 15 ' = 60 + 15 = 75 ( phút )
75 phút hay 1h 15' tiện dc số đinh ốc là :
\(75\times\frac{2}{3}=50\)cái đinh ốc
Vô số các số nằm ở giữa 1/3 và 1/5