Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 phần đó là : \(a,b,c\left(a,b,c>0\right)\)
Theo bài ra ta có :
\(3a=5b=6c\)
\(\Rightarrow\frac{3a}{30}=\frac{5b}{30}=\frac{6c}{30}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{6}=\frac{c}{5}\)
\(\Rightarrow\frac{a^3}{1000}=\frac{b^3}{216}=\frac{c^3}{125}\) và \(a^3+b^3+c^3=10728\)
Áp dụng tính chất của dãy tỉ sô bằng nhau ta có :
\(\frac{a^3}{1000}=\frac{b^3}{216}=\frac{c^3}{125}=\frac{a^3+b^3+c^3}{1000+216+125}=\frac{10728}{1341}=8\)
\(\Rightarrow\hept{\begin{cases}\frac{a^3}{1000}=8\Rightarrow a^3=8000\Rightarrow a=20\\\frac{b^3}{216}=8\Rightarrow b^3=1728\Rightarrow b=12\\\frac{c^3}{125}=8\Rightarrow c^3=1000\Rightarrow c=10\end{cases}}\)
\(\Rightarrow M=20+12+10\)
\(\Rightarrow M=42\)
Vậy M =42
Chúc bạn học tốt !!!
Câu hỏi của Phạm Minh Phương t - Toán lớp 7 - Học toán với OnlineMath
Câu 1:
Gọi ba phần được chia từ số 470 lần lượt là x, y, z
Có: Ba phần tỉ lệ nghịch với 3, 4, 5
⇒x3=y4=z5⇒x20=y15=z12⇒x3=y4=z5⇒x20=y15=z12 và x+y+z=470x+y+z=470
Áp dụng tính chất dãy tỉ số bằng nhau
x20=y15=z12=x+y+z20+15+12=47047=10x20=y15=z12=x+y+z20+15+12=47047=10
⇒\hept⎧⎨⎩x=200y=150z=120
Câu hỏi của Phạm Minh Phương t - Toán lớp 7 - Học toán với OnlineMath
Câu tương tự :
Gọi x,y,z là 3 phần chia ra từ A lần lượt tỉ lệ nghịch với 5, 2 và 4.
Theo đề bài, ta có: x^3 + y^3 + z^3 = 9512 (1)
x + y + z = A (2)
Gọi k là hằng số của hệ số nghịch đảo của x,y,z và 5,2,4.
Ta có x = k/5, y=k/2, z=k/4 (3)
Thay (3) vào (1) ta có:
k^3/5^3 + k^3/2^3 + k^3/4^3 = 9512
-> k^3/125 + k^3/8 + k^3/64 = 9512
-> 64*k^3 + (125*8)k^3 + 125*k^3 = 9512 * 125 * 64
-> (64 + 1000 + 125)* k^3 = 76096000
-> k^3 = 76090000 / 1189 = 64000 = 64 * 1000 = 4^3 * 10^3 = (4*10)^3
-> k = 40
Suy ra: x = k/5 = 8, y = k/2 = 20, z = k/4 = 10
Theo (2) ta suy ra A = x+y+z = 8+20+10 = 38
gọi 3 phần là x,y,z
Ta có : \(x:y:z=\frac{1}{5}:\frac{1}{2}:\frac{1}{4}=4:10:5\)hay \(\frac{x}{4}=\frac{y}{10}=\frac{z}{5}=k\)
suy ra : k3 = \(\frac{x^3}{64}=\frac{y^3}{1000}=\frac{z^3}{125}=\frac{x^3+y^3+z^3}{64+1000+125}=\frac{9512}{1189}=8\)
\(\Rightarrow k=2\)
\(\Rightarrow\frac{x+y+z}{4+10+5}=2\)suy ra : x + y + z = 2 . 19 = 38
Vậy A = 38
Gọi 3 phần là a,b,c
Ta có: \(\frac{a}{\frac{1}{5}}=\frac{b}{\frac{1}{2}}=\frac{c}{\frac{1}{4}}\Rightarrow\frac{a^3}{\frac{1}{125}}=\frac{b^3}{\frac{1}{8}}=\frac{c^3}{\frac{1}{64}}=\frac{a^3+b^3+c^3}{\frac{1}{125}+\frac{1}{8}+\frac{1}{64}}=\frac{9512}{\frac{1189}{8000}}=64000\)
\(\Rightarrow\frac{a^3}{\frac{1}{125}}=64000\Rightarrow a^3=512\Rightarrow a=8\)
\(\frac{b^3}{\frac{1}{8}}=64000\Rightarrow b^3=8000\Rightarrow b=20\)
\(\frac{c^3}{\frac{1}{64}}=64000\Rightarrow c^3=1000\Rightarrow c=10\)
Vậy A = a + b + c = 8 + 20 + 10 = 38
gọi ba phần là x,y,z
Ta có : x : y : z = \(\frac{1}{5}:\frac{1}{2}:\frac{1}{4}=4:10:5\)
hay \(\frac{x}{4}=\frac{y}{10}=\frac{z}{5}=k\)
\(\Rightarrow k^3=\frac{x^3}{64}=\frac{y^3}{1000}=\frac{z^3}{125}=\frac{x^3+y^3+z^3}{64+1000+125}=\frac{9512}{1189}=8\)
\(\Rightarrow k=2\)
Vậy : \(\frac{x+y+z}{4+10+5}=2\)suy ra \(x+y+z=2.19=38\)
\(\Rightarrow A=38\)
Gọi 3 phần đó đó là a,b,c
Vì a,b,c tỉ lệ nghịch với 5;2;4 nên a,b,c tỉ lệ thuận với 1/5,1/2,1/4 tức là
\(\frac{a}{\frac{1}{5}}=\frac{b}{\frac{1}{2}}=\frac{c}{\frac{1}{4}}\Rightarrow5a=2b=4c\Rightarrow\frac{5a}{20}=\frac{2b}{20}=\frac{4c}{20}\Rightarrow\frac{a}{4}=\frac{b}{10}=\frac{c}{5}\)
Đặt \(k=\frac{a}{4}=\frac{b}{10}=\frac{c}{5}\)
\(\Rightarrow k^3=\frac{a^3}{64}=\frac{b^3}{1000}=\frac{c^3}{125}=\frac{a^3+b^3+c^3}{64+1000+125}=\frac{9512}{1189}=8\)
=> k = 2
\(\Rightarrow\hept{\begin{cases}\frac{a}{4}=2\\\frac{b}{10}=2\\\frac{c}{5}=2\end{cases}\Rightarrow\hept{\begin{cases}a=8\\b=20\\c=10\end{cases}}}\)
=> A = a + b + c = 8 + 20 + 10 = 38
Gọi 3 phần đó là \(a,b,c\left(a,b,c>0\right).\)
Theo đề bài, ta có:
\(3a=5b=6c.\)
\(\Rightarrow\frac{3a}{30}=\frac{5b}{30}=\frac{6c}{30}.\)
\(\Rightarrow\frac{a}{10}=\frac{b}{6}=\frac{c}{5}.\)
\(\Rightarrow\frac{a^3}{1000}=\frac{b^3}{216}=\frac{c^3}{125}\) và \(a^3+b^3+c^3=10728.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a^3}{1000}=\frac{b^3}{216}=\frac{c^3}{125}=\frac{a^3+b^3+c^3}{1000+216+125}=\frac{10728}{1341}=8.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a^3}{1000}=8\Rightarrow a^3=8000\Rightarrow a=20\\\frac{b^3}{216}=8\Rightarrow b^3=1728\Rightarrow b=12\\\frac{c^3}{125}=8\Rightarrow c^3=1000\Rightarrow c=10\end{matrix}\right.\)
\(\Rightarrow M=20+12+10\)
\(\Rightarrow M=42.\)
Vậy \(M=42.\)
Chúc bạn học tốt!