Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Theo giả thiết ta có y ( 0 ) = 0 y ' ( 0 ) = 0 ⇔ d = 0 c = 0 ⇒ hàm số có dạng y = a x 3 + b x 2 ⇒ y ' = 3 a x 2 + 2 b x
Cũng từ giả thiết có y ( 2 ) = - 4 y ' ( 2 ) = 0 ⇒ 8 a + 4 b = - 4 12 a + 4 b = 0 ⇔ 2 a + b = - 1 3 a + b = 0 ⇔ a = 1 b = - 3 ⇒ y ( - 2 ) = ( - 2 ) 3 - 3 ( - 2 ) 2 = - 20
Đáp án B
Sai lầm thường gặp: Tập xác định D = ℝ \ 3 .
Đạo hàm y ' = − 2 x − 3 2 ,0, ∀ x ∈ D ⇒ Hàm số nghịch biến trên ℝ \ 3 , hoặc làm số nghịch biến trên − ∞ ; 3 ∪ 3 ; + ∞ . Hàm số không có cực trị.
Tiệm cận đứng: x=3; tiệm cận ngang: y=1. Đồ thị hàm số nhận giao điểm I 3 ; 1 của hai đường tiệm cận làm tâm đối xứng.
Từ đó nhiều học sinh kết luận các mệnh đề 1 , 3 , 4 đúng và chọn ngay A.
Tuy nhiên đây là phương án sai.
Phân tích sai lầm:
Mệnh đề (1) sai, sửa lại: hàm số nghịch biến trên mỗi khoảng − ∞ ; 3 và 3 ; + ∞ . Học sinh cần nhớ rằng, ta chỉ học định nghĩa hàm số đồng biến (nghịch biến) trên khoảng, đoạn, nửa khoảng; chứ không có trên những khoảng hợp nhau.
Mệnh đề (2) sai. Đồ thị hàm số có một tiệm cận đứng là x=3, một tiệm cận ngang là y=1.
Mệnh đề 3 , 4 đúng.
Đáp án C
y ' = 3 a x 2 + 2 b x + c .
Ta có hệ phương trình
a .0 3 + b .0 2 + c .0 + d = 2 a .2 3 + b .2 2 + c .2 + d = − 2 3 a .0 2 + 2 b .0 + c = 0 3 a .2 2 + 2 b .2 + c = 0 ⇔ a = 1 b = − 3 c = 0 d = 2 .
Vậy hàm số đó là y = x 3 − 3 x 2 + 2. Ta có y − 1 = − 2 .
Đáp án A
Ta có: y ' = 4 x 3 − 4 x = 0 ⇔ x = 0 x = ± 1
Hàm số có 3 cực trị.