Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{3x+3y+5}{x+y}=3+\frac{5}{x+y}\)
Để P nguyên thì x + y phải là ước của 5 hay
(x + y) = (1; 5)
Thế vào rồi giải ra
Ta có :
\(P=3+\frac{5}{x+y}\)
\(P\in Z\Leftrightarrow\frac{5}{x+y}\in Z\Leftrightarrow x+y\inƯ_5\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;4\right);\left(2;3\right);\left(4;1\right);\left(3;2\right)\right\}\)
Xuất phát từ điều kiện của bài toán ta có 1+x+y+xy=4, hay (1+x)(1+y)=4. Suy ra 1+x là ước số nguyên của 4, tức là 1+x có thể là 1;-1;2;-2;4;-4. Từ đó ta tìm được các giá trị x tương ứng là 0;-2;1;-3;3;-5 và các giá trị y tương ứng là 3;-5;1;-3;0;-2. Vậy các cặp số nguyên (x;y) cần tìm là (0;3),
(-2;-5),(1;1),(-3;-3),(3;0),(-5;-2).
Câu 2
Giả sử ba phân số tối giản cần tìm là a/b;c/d;e/f. Theo đề bài ta có
+) a,c,e tỉ lệ với 2,3,5 nên a/2=c/3=e/5=m. Suy ra a=2m,c=3m,e=5m.
+) b,d,f tỉ lệ với các số 5,4,6 nên b/5=d/4=f/6=n. Suy ra b=5n,d=4n,f=6n.
+) a/b+c/d+e/f=-187/60=>2m/5n+3m/4n+5m/6n=-...
=>(2/5+3/4+5/6)m/n=-187/60
=>(119/60)m/n=-187/60
=>m/n=-11/7.
Từ đó suy ra a/b=(2/5).(-11/7)=-22/35
c/d=(3/4).(-11/7)=-33/28
e/f=(5/6).(-11/7)=-55/42.
a.ĐKXĐ \(\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)
A=\(\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)
=\(\frac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
=\(\frac{x-4}{x-2}\)
b. Để A >0 thì \(\frac{x-4}{x-2}\) >0 \(\Rightarrow\orbr{\begin{cases}x< 2\\x>4\end{cases}}\)
Kết hợp ĐK thì \(\orbr{\begin{cases}x< 2,x\ne-3\\x>4\end{cases}}\)
c. \(A=\frac{x-4}{x-2}=1+\frac{-2}{x-2}\)
Để A nguyên thì \(x-2\inƯ\left(-2\right)=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{0,1,3,4\right\}\)
Khi thay vào A, để A dương thì \(x\in\left\{0;1\right\}\)
Vậy để A nguyên dương thì \(x\in\left\{0;1\right\}\)
Câu c, có thể nói kết hợp với điều kiện giải được trong câu b, ta tìm được \(x\in\left\{0;1\right\}\)
\(P=\frac{3x+3y+5}{x+y}=\frac{3\left(x+y\right)+5}{x+y}=3+\frac{5}{x+y}\)mà\(P\in Z\Rightarrow\frac{5}{x+y}\in Z\)mà\(x,y\ge1\Rightarrow x+y\ge2\)
=> x + y = 5 (vì 5 là ước nguyên của 5).Có 4 cặp (x ; y) thỏa mãn đề là (1 ; 4);(2 ; 3);(3 ; 2);(4 ; 1)