Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt biểu thức trên là A, thay xyz = 2018, ta dược :
\(A=\dfrac{x^2yz}{xy+xyz+x^2yz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+x+1}\)
\(=\dfrac{xy\left(xz\right)}{xy\left(1+z+xz\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{z+zx+1}\)
\(=\dfrac{xz}{1+z+xz}+\dfrac{1}{z+1+xz}+\dfrac{z}{z+zx+1}=\dfrac{xz+1+z}{1+z+xz}=1\)
⇒ĐPCM
Please help me!!!!!!!!!!!
I feel this exercise is difficult!!!!!!
Lời giải:
Áp dụng BĐT trong tam giác ta có:
$x+y>z$
$\Rightarrow xz+yz> z^2$
Tương tự: $xy+yz\geq y^2; xy+xz\geq x^2$
Cộng theo vế các BĐT trên ta thu được:
$2(xy+yz+xz)> x^2+y^2+z^2$
$\Leftrightarrow xy+yz+xz\geq \frac{x^2+y^2+z^2}{2}$ (đpcm)
ta có:x.y.y.z.x.z=\(\dfrac{1}{2}.\dfrac{3}{5}.\dfrac{27}{10}=\dfrac{81}{100}\)
=>(x.y.z)2= \(\left(\dfrac{9}{10}\right)^2=\left(\dfrac{-9}{10}\right)^2\)
Nếu x.y.z=\(\dfrac{9}{10}\)
=>\(\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{1}{3}\\z=\dfrac{9}{5}\end{matrix}\right.\)
Nếu x.y.z=\(\dfrac{-9}{10}\)
=>\(\left\{{}\begin{matrix}x=\dfrac{-3}{2}\\y=\dfrac{-1}{3}\\z=\dfrac{-9}{5}\end{matrix}\right.\)
a) Ta có : \(x - 2xy + y - 3 = 0\)
\(\Rightarrow-2xy+x+y=3\)
\(\Rightarrow-2.\left(-2xy+x+y\right)=-2.3\)
\(\Rightarrow4xy-2x-2y=-6\)
\(\Rightarrow4xy-2x-2y+1=-6+1\)
\(\Rightarrow2x.\left(2y-1\right).\left(2y-1\right)=-5\)
\(\Rightarrow\left(2y-1\right).\left(2x-1\right)=-5=1.\left(-5\right)=-5.1=\left(-1\right).5=5.\left(-1\right)\)
Tự lập bảng đi -.-
Nhân từng vế bất đẳng thức ta được : (xyz)2 = 36xyz + Nếu một trong các số x,y,z bằng 0 thì 2 số còn lại cũng bằng 0 + Nếu cả 3 số x,y,z khác 0 thì chia 2 vế cho xyz ta được xyz = 36 + Từ xyz =36 và xy = z ta được z2 = 36 nên z = 6; z = -6 + Từ xyz =36 và yz = 4x ta được 4x2 = 36 nên x = 3; x = -3 + Từ xyz =36 và ta được 9y2 = 36 nên y = 2; y = -2 - Nếu z = 6 thì x và y cùng dấu nên x = 3, y = 2 hoặc x = -3 , y = -2 - Nếu z = -6 thì x và y trái dấu nên x = 3 ; y = -2 hoặc x = -3; y=2 |
Vậy có 5 bộ số (x, y, z) thoã mãn: (0,0,0); (3,2,6);(-3,-2,6);(3,-2,-6);(-3,2.-6)
\(\hept{\begin{cases}x^2=yz\\y^2=xz\\z^2=xy\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{y}=\frac{z}{x}\\\frac{x}{y}=\frac{y}{z}\\\frac{z}{x}=\frac{y}{z}\end{cases}\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
\(\Rightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Rightarrow x=y=z}\)
Cách 1 : Lập từng TH :
TH1 : Nếu x , y , z đều dương
suy ra ko thỏa mãn do xz = -9/13 (âm ) (S)
TH2 : Nếu x , y dương , z âm
suy ra ko thỏa mãn do yz = 3/7 ( dương ) (S)
TH3 : x âm , y,z dương
suy ra không thỏa mãn do xy = 2/5 (dương) (S)
TH4 : x , y , z đều am
suy ra không thỏa mãn do xz = -9/13 ( âm ) (S)
TH5 : x,y âm z dương
suy ra không thỏa mãn do yz = 3/7 ( dương ) (S)
Từ 5 trường hợp trên =) ko có số bố (x,y,z) thỏa mãn
Cách 2 :
Theo bài ra , ta có :
\(xy=\dfrac{2}{5},yz=\dfrac{3}{7},xz=-\dfrac{9}{13}\)
\(\Rightarrow xy.yz.xz=\dfrac{2}{5}\times\dfrac{3}{7}\times-\dfrac{9}{13}=-\dfrac{54}{455}\)
\(\Rightarrow\left(xyz\right)^2=-\dfrac{54}{455}\)
\(\Rightarrow xyz=\sqrt{\left(-\dfrac{54}{455}\right)}\)(Không xác định được vì một số bình phương không thể âm
Suy ra không có bộ (x,y,z) nào thỏa mãn các đk trên
Chúc bạn hok tốt =))