Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai góc phụ nhau thì sin góc nọ bằng cos góc kia, từ đó ta có: \(sin1^o=cos89^o,sin2^o=cos88^o,...\)
Từ đó ta suy ra \(A=cos^289^o+sin^289^o+cos^288^o+sin^288^o+...+sin^245^o\)
\(=1+1+...+\frac{1}{2}=44\frac{1}{2}\)
\(=\left(\sin^212^0+\sin^278^0\right)+\left(\sin^270^0+\sin^220^0\right)-\left(\sin^235^0+\sin^255^0\right)+\sin^230^0\)
\(=1+1-1+\dfrac{1}{4}=1+\dfrac{1}{4}=\dfrac{5}{4}\)
Ta có \(\sin x=\cos\left(90^0-x\right)\)
\(\Rightarrow M=\left(\sin^242^0+\sin^248^0\right)+\left(\sin^243^0+\sin^247^0\right)+\left(\sin^244^0+\sin^246^0\right)+\sin^245^0\)
\(=\left(\sin^242^0+\cos^242^0\right)+\left(\sin^243^0+\cos^243^0\right)+\left(\sin^244^0+\cos^244^0\right)+\sin^245^0\)
\(=1+1+1+\left(\frac{\sqrt{2}}{2}\right)^2=3+\frac{1}{2}=\frac{7}{2}\)
\(A=\left(sin^212^o+sin^278^o\right)+\left(sin^21^o+sin^289^o\right)+\left(sin^273^o+sin^217^o\right)\)
\(A=\left(sin^290^o\right)+\left(sin^290^o\right)+\left(sin^290^o\right)\)
\(A=1+1+1=3\)
`D=(sin^2 alpha + 2sin alpha . cos alpha + cos^2 alpha - sin^2 alpha + 2 sin alpha . cos alpha + cos^2 alpha ) / (sin alpha . cos alpha )`
`D=(4 sin alpha . cos alpha )/(sin alpha . cos alpha )`
`D=4`
`D=(sin^2 alpha + 2sin alpha . cos alpha + cos^2 alpha - (sin^2 alpha - 2 sin alpha . cos alpha + cos^2 alpha )) / (sin alpha . cos alpha )`
`D=(sin^2 alpha + 2sin alpha . cos alpha + cos^2 alpha - sin^2 alpha + 2 sin alpha . cos alpha - cos^2 alpha ) / (sin alpha . cos alpha )`
`D=((sin^2 alpha - sin^2 alpha ) + (2sin alpha . cos alpha + cos^2 alpha + 2 sin alpha . cos alpha) +( cos^2 alpha - cos^2 alpha )) / (sin alpha . cos alpha )`
`D=(4 sin alpha . cos alpha )/(sin alpha . cos alpha )`
`D=4`
Ta có: \(A=\sin^25^0+\sin^225^0+\sin^245^0+\sin^265^0+\sin^285^0\)
\(=\left(\sin^25^0+\sin^285^0\right)+\left(\sin^225^0+\sin^265^0\right)+\dfrac{1}{2}\)
\(=2+\dfrac{1}{2}=\dfrac{5}{2}\)
\(\Rightarrow A=\left(sin^25^0+sin^285^0\right)+\left(sin^225^0+sin^265^0\right)+sin^245^0=\left(sin^25^0+cos^25^0\right)+\left(sin^225^0+cos^225^0\right)+\dfrac{1}{2}=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)