Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(sin\left(4x-10^0\right)=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow sin\left(4x-10^0\right)=sin45^0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-10^0=45^0+k360^0\\4x-10^0=135^0+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=55^0+k360^0\\4x=145^0+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=13,75^0+k90^0\\x=36,25^0+k90^0\end{matrix}\right.\) (\(k\in Z\))
2.
Đề không đúng
3.
ĐKXĐ: \(\left\{{}\begin{matrix}cos2x\ne0\\cosx\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
\(tan2x=tanx\)
\(\Rightarrow2x=x+k\pi\)
\(\Rightarrow x=k\pi\)
4.
\(cot\left(x+\dfrac{\pi}{5}\right)=-1\)
\(\Leftrightarrow x+\dfrac{\pi}{5}=-\dfrac{\pi}{4}+k\pi\)
\(\Leftrightarrow x=-\dfrac{9\pi}{20}+k\pi\) (\(k\in Z\))
\(\Leftrightarrow cos3x=cos\left[\dfrac{\pi}{2}-\left(x-\dfrac{\pi}{4}\right)\right]\)
\(\Leftrightarrow cos3x=cos\left(\dfrac{3\pi}{4}-x\right)\)
\(\Rightarrow\left[{}\begin{matrix}3x=\dfrac{3\pi}{4}-x+k2\pi\\3x=x-\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=...\)
a: \(\Leftrightarrow cos2x=\dfrac{1}{\sqrt{2}}\)
=>2x=pi/4+k2pi hoặc 2x=-pi/4+k2pi
=>x=pi/8+kpi hoặc x=-pi/8+kpi
b: \(\Leftrightarrow sinx=sin\left(\dfrac{pi}{2}-3x\right)\)
=>x=pi/2-3x+k2pi hoặ x=pi/2+3x+k2pi
=>4x=pi/2+k2pi hoặc -2x=pi/2+k2pi
=>x=pi/8+kpi/2 hoặc x=-pi/4-kpi
d: \(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=-sin\left(3x+\dfrac{pi}{4}\right)\)
\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=sin\left(-3x-\dfrac{pi}{4}\right)\)
\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=cos\left(3x+\dfrac{3}{4}pi\right)\)
=>3x+3/4pi=x+pi/3+k2pi hoặc 3x+3/4pi=-x-pi/3+k2pi
=>2x=-5/12pi+k2pi hoặc 4x=-13/12pi+k2pi
=>x=-5/24pi+kpi hoặc x=-13/48pi+kpi/2
e: \(\Leftrightarrow sinx-\sqrt{3}\cdot cosx=0\)
\(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=0\)
=>x-pi/3=kpi
=>x=kpi+pi/3
2.
\(sin3x+cos2x=1+2sinx.cos2x\)
\(\Leftrightarrow sin3x+cos2x=1+sin3x-sinx\)
\(\Leftrightarrow cos2x+sinx-1=0\)
\(\Leftrightarrow-2sin^2x+sinx=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
1.
\(cos3x-cos4x+cos5x=0\)
\(\Leftrightarrow cos3x+cos5x-cos4x=0\)
\(\Leftrightarrow2cos4x.cosx-cos4x=0\)
\(\Leftrightarrow\left(2cosx-1\right)cos4x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{1}{2}\\cos4x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\4x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\end{matrix}\right.\)
\(sin\left(2x+\dfrac{\pi}{3}\right)+cos3x=0\)
\(\Leftrightarrow cos\left(\dfrac{\pi}{6}-2x\right)+cos3x=0\)
\(\Leftrightarrow2cos\left(\dfrac{\pi}{12}+\dfrac{x}{2}\right).cos\left(\dfrac{\pi}{12}-\dfrac{5x}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(\dfrac{\pi}{12}+\dfrac{x}{2}\right)=0\\cos\left(\dfrac{\pi}{12}-\dfrac{5x}{2}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\pi}{12}+\dfrac{x}{2}=\dfrac{\pi}{2}+k\pi\\\dfrac{\pi}{12}-\dfrac{5x}{2}=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{6}+k2\pi\\x=-\dfrac{\pi}{6}+\dfrac{k2\pi}{5}\end{matrix}\right.\)
Ta có: \(sin\left(2x+\dfrac{\pi}{3}\right)=-cos3x=cos\left(\pi-3x\right)=sin\left(\dfrac{\pi}{2}-\left(\pi-3x\right)\right)=sin\left(3x-\dfrac{1}{2}\right)\)
\(\Rightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{3}=3x-\dfrac{1}{2}+k2\pi\\2x+\dfrac{\pi}{3}=\pi-3x+\dfrac{1}{2}+k2\pi\end{matrix}\right.\) Bạn tự tìm x được.