K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2017

\(S=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+.....+\frac{n}{2^n}+......+\frac{2017}{2^{2017}}\)

Với n > 2 thì \(\frac{n}{2^n}=\frac{n+1}{2^{n-1}}-\frac{n+2}{2^n}\)

\(\frac{n+1}{2^{n-1}}=\frac{n+1}{2^n:2}=\frac{n+1}{\frac{2^n}{2}}=\frac{2^{\left(n+1\right)}}{2^n}\)

\(\frac{n+1}{2^{n-1}}-\frac{n+2}{2^n}=\frac{2^{n+2}}{2^n}-\frac{n+2}{2^n}\)

\(=\frac{2^{n+2}-n-2}{2^n}\)

\(=\frac{n}{2^n}\)

\(\Leftrightarrow S=\frac{1}{2}+\left(\frac{2+1}{2^{2-1}}-\frac{2+2}{2^2}\right)+.....+\frac{2016+1}{2^{2015}}-\frac{2018}{2^{2016}}\)

\(=\frac{2017+1}{2^{2016}}-\frac{2019}{2^{2017}}\)

\(S=\frac{1}{2}+\frac{3}{2}-\frac{2019}{2017}\)

\(S=2-\frac{2019}{2017}\)

\(\Leftrightarrow S=2-\frac{2019}{2017}< 2\)

Hay \(S< 2\)

3 tháng 12 2017

Ta có \(A=\frac{2017-2018}{2017+2018}=\frac{\left(2017-2018\right)\left(2017+2018\right)}{\left(2017+2018\right)^2}=\frac{2017^2-2018^2}{2017^2+2018^2+2.2017.2018}< \frac{2017^2-2018^2}{2017^2+2018^2}=B\)

Vậy A<B

13 tháng 7 2017

A=24783,14746B=49566,29188

Vậy A<B

14 tháng 7 2017

Ta thấy \(A=\frac{2018-2017}{2018+2017}=\frac{2018^2-2017^2}{\left(2018+2017\right)^2}=\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}\)

Mà \(2018^2+2.2018.2017+2017^2>2018^2+2017^2\)

\(\Rightarrow\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}< \frac{2018^2-2017^2}{2018^2+2017^2}\)

Vậy A<B

17 tháng 2 2017

A=1/2^2 + 1/3^2 + 1/4^2 + ... + 1/2017^2

A < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2016.2017

A < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2016 - 1/2017

A < 1 - 1/2017 < 1 (1)

B = 2!/3! + 2!/4! + 2!/5! + ... + 2!/2017!

B = 2!.(1/3! + 1/4! + 1/5! + ... + 1/2017!)

B < 2.(1/2.3 + 1/3.4 + 1/4.5 + ... + 1/2016.2017)

B < 2.(1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/2016 - 1/2017)

B < 2.(1/2 - 1/2017) < 2.1/2 = 1 (2)

Từ (1) và (2) => A + B < 2 (đpcm)

7 tháng 2 2020

Ta có: \(B=\frac{1}{16}+\frac{2}{16^2}+\frac{3}{16^3}+...+\frac{2018}{16^{2018}}\)

\(\Rightarrow16B=1+\frac{2}{16}+\frac{3}{16^2}+....+\frac{2018}{16^{2017}}\)

\(\Rightarrow16B-B=15B=1+\frac{1}{16}+\frac{1}{16^2}+\frac{1}{16^3}+...+\frac{1}{16^{2017}}-\frac{2018}{16^{2018}}\)

Mà: \(A=1+\frac{1}{16}+\frac{1}{16^2}+\frac{1}{16^3}+...+\frac{1}{16^{2017}}\)

\(\Rightarrow16A=16+1+\frac{1}{16}+\frac{1}{16^2}+...+\frac{1}{16^{2016}}\)

\(\Rightarrow16A-A=16-\frac{1}{16^{2017}}\)

\(\Rightarrow A=\frac{16-\frac{1}{16^{2017}}}{15}\)

\(\Rightarrow15B=\frac{16-\frac{1}{16^{2017}}}{15}-\frac{2018}{16^{2018}}\)

\(\Rightarrow15B< \frac{16}{15}\)

\(\Rightarrow B< \frac{16}{15^2}< 1\)

\(\Rightarrow B^{2017}>B^{2018}\)

7 tháng 2 2020

Cảm ơn bạn nhiều :D

Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)Tính giá trị D = x ^2017 + y^2017 + z^2017Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)bài 3 : Cho a, b, c khác nhau thỏa mãn :\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)Chứng minh : 2 phân...
Đọc tiếp

Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tính giá trị D = x ^2017 + y^2017 + z^2017
Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)
Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)
bài 3 : Cho a, b, c khác nhau thỏa mãn :
\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)
Chứng minh : 2 phân thức có giá trị = 1 và 1 phân thức có giá trị = -1
Bài 4 : Cho A = \(\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)
a, Rút gọn A
b, Cm : Nếu n thuộc Z thì A tối giản
Bài 5 : Cho n thuộc Z, n nhỏ hơn hoặc = 1
CMR : 1^3 + 2^3 + 3^3 +....+ n^3 = \(\frac{n^2\left(n+1\right)^2}{4}\)
Bài 6 : Cho M =\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
N =\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
a, Cm : nếu M = 1 thì N = 0
b, Cm : Nếu N = 0 thì có nhất thiết M = 1 ko ?

0
19 tháng 11 2016

Ta có

\(1+2+...+n=\frac{n\left(n+1\right)}{2}\)

\(\Rightarrow\frac{1}{1+2+...+n}=\frac{2}{n\left(n+1\right)}\)

\(\Rightarrow1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}\)

\(=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

Áp dụng vào bài toán ta được

\(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+...+x}\right)=\frac{672}{2017}\)

\(\Leftrightarrow\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{\left(x-1\right)\left(x+2\right)}{x\left(x+1\right)}=\frac{672}{2017}\)

\(\Leftrightarrow\frac{1}{3}.\frac{\left(x+2\right)}{x}=\frac{672}{2017}\)

\(\Leftrightarrow2016x=2017\left(x+2\right)\)

Đề có thể bị sai rồi bạn

\(\Leftrightarrow x=\)

27 tháng 9 2017

a) \(\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6}{1-x}\)

\(=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{4x^2-3x+17+2x^2-x-2x+1-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{-12x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{-12\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=-\frac{12}{x^2+x+1}\)

b) \(\frac{1}{x^2-x+1}-\frac{x^2+2}{x^3+1}+1=\frac{x+1-x^2-2+x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x-x^2+x^3}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x}{x+1}\)

c) \(N=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)

\(N=\frac{a}{a\left(b+1+bc\right)}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)

\(N=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)

\(N=\frac{1+b}{b+1+bc}+\frac{abc^2}{ac+abc^2+abc}\)

\(N=\frac{1+b}{b+1+bc}+\frac{abc^2}{ac\left(1+bc+b\right)}\)

\(N=\frac{1+b}{b+1+bc}+\frac{bc}{1+bc+b}\)

\(N=\frac{1+b+bc}{b+1+bc}\)

\(N=1.\)

23 tháng 11 2016

Ta có

\(1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}\)

\(=\frac{n^2+n-2}{\left(n+1\right)n}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

Áp dụng vào bài toán ta có

\(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+...+x}\right)=\frac{672}{2017}\)

\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}...\frac{\left(x-1\right)\left(x+2\right)}{x\left(x+1\right)}=\frac{672}{2017}\)

\(\Leftrightarrow\frac{1}{3}.\frac{x+2}{x}=\frac{672}{2017}\)

\(\Leftrightarrow2017x+4034=2016x\)

  1. \(\Leftrightarrow x=-4034\)
22 tháng 11 2016

Đề đúng không thế sao t ra đáp số là số âm ta