Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, theo tỉ số lượng giác, ta có: \(\sin\alpha=\cos90-\alpha\)
=> cos28 = sin62 , cos88 = sin2 , cos20 = sin 70
mà sin của góc càng lớn giá trị càng lớn .=> sin2 , sin40 , sin62 , sin 65 , sin70
hay cos88 , sin 40 , cos28 , sin65 , cos 20
câu b làm tương tự nha bạn (1độ = 100')
à mà quên là \(\tan\alpha=\cot90-\alpha\)
và giá trị của tan cũng tăng theo giá trị góc như sin
Thứ tự tăng dần :
1) cos 62 độ 25 phút; sin 35 độ; cos 47 độ; sin 53 độ 30 phút; sin 74 độ.
2) tan 11 độ; cot 63 độ = tan 27 độ; cot 57 độ 30 phút; tan 55 độ
Sin 15 độ , Sin 30 độ , Cos 58 độ , Sin 48 độ , Cos 36 độ , Có 29 độ
Có phải giải thích ko bạn .
@Nguyễn Thành Trương @Nguyễn Ngọc Lộc giúp cj ý giải bài này với ạ. ( Cj ý nhờ e tag tên giùm; xl vì đã tag tên tự tiện ạ)
\(\cos73^0=\sin17^0< \sin32^0< \sin45^0< \sin52^0=\cos38^0\)
a) sin 40, cos 28, sin 65, cos88, cos20
ta có: \(cos28^0=sin62^0\)
\(cos88^0=sin2^0\)
\(cos20^0=sin70^0\)
vì \(sin2^0< sin40^0< sin62^0< sin65^0< sin70^0\)
nên \(cos88^0< sin40^0< cos28^0< sin65^0< cos20^0\)
b) \(tan32^048',cot28^036',tan56^032',cot67^018'\)
ta co: \(cot28^036'=tan62^036'\approx tan63^0\)
\(cot67^018'=tan23^018'\approx tan23^0\)
\(tan32^048'\approx tan33^0\)
\(tan56^032'\approx tan57^0\)
vi \(tan23^0< tan33^0< tan57^0< tan63^0\)
nen \(cot67^018'< tan32^048'< tan56^032'< cot28^036'\)