Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(3\sqrt{5}=\sqrt{9.5}=\sqrt{45}\)
\(2\sqrt{6}=\sqrt{4.6}=\sqrt{24}\)
\(4\sqrt{2}=\sqrt{16.2}=\sqrt{32}\)
Do 24 < 29 < 32 < 45 => \(\sqrt{24}< \sqrt{29}< \sqrt{32}< \sqrt{45}\)
=> \(2\sqrt{6}< \sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)
b)
\(5\sqrt{2}=\sqrt{25.2}=\sqrt{50}\\ 3\sqrt{8}=\sqrt{9.8}=\sqrt{72}\\ 2\sqrt{15}=\sqrt{4.15}=\sqrt{60}\)
Do 39 < 50 < 60 < 72 nên \(\sqrt{39}< \sqrt{50}< \sqrt{60}< \sqrt{72}\)
=> \(\sqrt{39}< 5\sqrt{2}< 2\sqrt{15}< 3\sqrt{8}\)
a: 3căn5=căn 45
2căn 6=căn 24
căn 29=căn 29
4căn2=căn 32
=>2căn6<căn29<4căn2<3căn5
b: 5căn 2=căn 50
căn 39=căn 39
3căn 8=căn 72
2căn 15=căn60
=>căn 39<5căn2<2căn15<3căn8
\(\left(3\sqrt{10}\right)^2=90\)
\(\left(5\sqrt{3}\right)^2=75\)
\(\left(4\sqrt{5}\right)^2=80\)
\(\left(12\sqrt{\dfrac{2}{3}}\right)^2=96\)
mà 96>90>80>75
nên \(12\sqrt{\dfrac{2}{3}}>3\sqrt{10}>4\sqrt{5}>5\sqrt{3}\)
\(\left(3\sqrt{10}\right)^2=90\)
\(\left(5\sqrt{3}\right)^2=75\)
\(\left(4\sqrt{5}\right)^2=80\)
\(\left(12\sqrt{\dfrac{2}{3}}\right)^2=96\)
mà 96>90>80>75
nên \(12\sqrt{\dfrac{2}{3}}>3\sqrt{10}>4\sqrt{5}>5\sqrt{3}\)
Bài 1: Đưa thừa số ra ngoài dấu căn:
\(2\sqrt{225a^2}=2.15a=30a\)
Bài 2: Đưa thừa số vào trong dấu căn :
\(x\sqrt{\dfrac{-39}{x}}=\sqrt{x^2.\dfrac{-39}{x}}=\sqrt{-39x}\)
Bài 3: Sắp xếp theo thứ tự tăng dần :
a) \(2\sqrt{3}< 3\sqrt{2}< 2\sqrt{5}< 5\sqrt{2}\)
b) \(4\sqrt{2}< \sqrt{37}< 2\sqrt{15}< 3\sqrt{7}\)
c) \(6\sqrt{\dfrac{1}{3}}< \sqrt{27}< 2\sqrt{28}< 5\sqrt{7}\)
đề là rút gọn các biểu thức sau
nhờ mọi người giải giúp mình. cảm ơn mn nhìu
a: \(=\dfrac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\dfrac{3\sqrt{5}+5-3-\sqrt{5}}{2\sqrt{5}+2}\)
\(=\dfrac{2\sqrt{5}+2}{2\sqrt{5}+2}=1\)
b: \(=\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-2-2\sqrt{5}\)
=2căn 5-2-2căn 5
=-2
d: \(=\dfrac{\sqrt{2}}{2+\sqrt{3}+1}+\dfrac{\sqrt{2}}{2-\sqrt{3}+1}\)
\(=\dfrac{\sqrt{2}}{3+\sqrt{3}}+\dfrac{\sqrt{2}}{3-\sqrt{3}}\)
\(=\dfrac{3\sqrt{2}-\sqrt{6}+3\sqrt{2}+\sqrt{6}}{6}=\sqrt{2}\)
a: Ta có: \(A=\sqrt{8}-2\sqrt{18}+3\sqrt{50}\)
\(=2\sqrt{2}-6\sqrt{2}+15\sqrt{2}\)
\(=11\sqrt{2}\)
b: Ta có: \(B=\sqrt{125}-10\sqrt{\dfrac{1}{20}}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)
\(=5\sqrt{5}-\sqrt{5}+\sqrt{5}-1\)
\(=5\sqrt{5}-1\)
1) \(\sqrt{12}\)+\(5\sqrt{3}-\sqrt{48}\)
= \(2\sqrt{3}+5\sqrt{3}-4\sqrt{3}\)
= (2+5-4).\(\sqrt{3}\)
= \(3\sqrt{3}\)
2)\(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
= \(5\sqrt{5}+2\sqrt{5}-3.3\sqrt{5}\)
= \(5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
= \(\left(5+2-9\right).\sqrt{5}\)
= -2\(\sqrt{2}\)
3)\(3\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
= \(3.4\sqrt{2}+4.2\sqrt{2}-5.3\sqrt{2}
\)
= 12\(\sqrt{2}\) \(+8\sqrt{2}\) \(-15\sqrt{2}\)
= \(\left(12+8-15\right).\sqrt{2}\)
= \(5\sqrt{2}\)
4)\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
= \(3.2\sqrt{3}-4.3\sqrt{3}+5.4\sqrt{3}\)
= \(6\sqrt{3}-12\sqrt{3}+20\sqrt{3}\)
= \(\left(6-12+20\right).\sqrt{3}\)
= \(14\sqrt{3}\)
5)\(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
= \(2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
= \(\left(2+5-3\right).\sqrt{3}\)
= \(4\sqrt{3}\)
6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
= \(2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= 6\(\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= \(\left(6-7+9\right).\sqrt{2}\)
= 8\(\sqrt{2}\)
7)\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
= \(3.2\sqrt{5}-2.3\sqrt{5}+4\sqrt{5}\)
= \(6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
= \(4\sqrt{5}\)
8)\(\left(\sqrt{2}+2\right).\sqrt{2}-2\sqrt{2}\)
= \(\left(\sqrt{2}\right)^2+2\sqrt{2}-2\sqrt{2}\)
= 2
a)
\(7\sqrt{2}=\sqrt{49.2}=\sqrt{98}\\ 2\sqrt{8}=\sqrt{4.8}=\sqrt{32}\\ 5\sqrt{2}=\sqrt{25.2}=\sqrt{50}\)
Do 98 > 50 > 32 > 28 nên \(\sqrt{98}>\sqrt{50}>\sqrt{32}>\sqrt{28}\)
=> \(7\sqrt{2}>5\sqrt{2}>2\sqrt{8}>\sqrt{28}\)
b)
\(3\sqrt{10}=\sqrt{9.10}=\sqrt{90}\\ 5\sqrt{3}=\sqrt{25.3}=\sqrt{75}\)
\(\dfrac{20}{\sqrt{5}}=\dfrac{20\sqrt{5}}{5}=4\sqrt{5}=\sqrt{16.5}=\sqrt{80}\)
\(12\sqrt{\dfrac{2}{3}}=\sqrt{144.\dfrac{2}{3}}=\sqrt{96}\)
Do 96 > 90 > 80 > 75 => \(\sqrt{96}>\sqrt{90}>\sqrt{80}>\sqrt{75}\)
=> \(12\sqrt{\dfrac{2}{3}}>3\sqrt{10}>\dfrac{20}{\sqrt{5}}>5\sqrt{3}\)