K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2021

a,

Đổi `tan 12^o = cot 78^o ; tan 28^o = cot 62^o ; tan 58^o = cot 32^o`

Vì `32^o<61^o<62^o<78^o<79^15'`

`->cot 32^o>cot 61^o>cot 62^o > cot 78^o > cot 79^o15'`

`->tan 58^o>cot 61^o > tan 28^o > tan 12^o > cot 79^o15'`

b,

Đổi `sin 56^o = cos 34^o ; sin 74^o=cos 16^o`

Vì `16^o<24^o<63^o41'<67^o<85 ^o`

`->cos 16^o>cos 34^o>cos 63^o41'>cos 67^o>cos 85 ^o`

`->sin 74^o>sin 56^o>cos 63^o41'>cos 67^o>cos 85 ^o`

a: \(=\left(sin^210^0+sin^280^0\right)+\left(sin^220^0+sin^270^0\right)+sin^245^0\)

\(=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)

b: \(=\left(sin^242^0+sin^248^0\right)+\left(sin^243^0+sin^247^0\right)+...+sin^245^0\)

=1+1+1+1/2

=3,5

c: \(=tan35^0\cdot tan55^0\cdot tan40^0\cdot tan50^0\cdot tan45^0=1\)

d: \(=\left(cos^215^0+cos^275^0\right)-\left(cos^225^0+cos^265^0\right)+\left(cos^235^0+cos^255^0\right)-\dfrac{1}{2}\)

=1-1+1-1/2

=1/2

17 tháng 8 2018

ta có : \(M=2cot37.cot53+sin^228\dfrac{3tan54}{cot36}+sin^262\)

\(=2.cot37.cot\left(90-37\right)+sin^228\dfrac{3tan54}{cot\left(90-54\right)}+sin^262\)

\(=2.cot37.tan37+sin^228\dfrac{3tan54}{tan54}+sin^262\)

\(=2+3sin^228+sin^262=2+2sin^228+sin^228+sin^2\left(90-28\right)\)

\(=2+2sin^228+sin^228+cos^228=3+2sin^228\)

31 tháng 7 2018

Có sin32048'=cos57012'

sin510=cos390

do đó cos28036' < cos390 < cos57012' < cos65017'

Sắp xếp theo thứ tự tăng dần là:cos28036'<sin510<sin32048'< cos65017'

a: \(=\left(\cos^215^0+\cos^275^0\right)+\left(\cos^225^0+\cos^265^0\right)+\left(\cos^235^0+\cos^255^0\right)+\cos^245^0\)

=1+1+1+1/2

=3,5

b: \(=\left(\sin^210^0+\sin^280^0\right)-\left(\sin^220^0+\sin^270^0\right)+\left(\sin^230^0\right)-\left(\sin^240^0+\sin^250^0\right)\)

=1-1-1+1/4

=-1+1/4=-3/4

c: \(=\left(\sin15^0-\cos75^0\right)+\left(\sin75^0-\cos15^0\right)+\sin30^0\)

=1/2

27 tháng 7 2019

A=\(\left(sin^215^o+sin^275^o\right)+\left(sin^240^o+sin^250^o\right)+\left(sin^260^o+sin^230^o\right)\)

\(=\left(sin^215^o+cos^215^o\right)+...\)

\(=1\cdot3=3\)

Câu c tương tự mà mk nghĩ đề sai dấu - trước cos^245độ

Nói chung nếu: a+b=90 độ

thì: \(sin^2a+sin^2b=1\)

b) thì áp dụng nếu a+b=90 độ:

\(tana=cotb\) và ngược lại

\(tana\cdot cota=1\)

Nói chung là công thức......

8 tháng 7 2021

a) Ta có: \(sin\alpha=cos\left(90-\alpha\right)\Rightarrow sin42=cos48\)

\(\Rightarrow sin42-cos48=0\)

b) Ta có: \(sin\alpha=cos\left(90-\alpha\right)\Rightarrow sin61=cos29\Rightarrow sin^261=cos^229\)

\(\Rightarrow sin^261+sin^229=sin^229+cos^229=1\)

c) Ta có: \(tan\alpha=\dfrac{1}{tan\left(90-\alpha\right)}\Rightarrow tan40=\dfrac{1}{tan50}\)

\(\Rightarrow tan40.tan50=1\) mà \(tan45=1\Rightarrow tan40.tan45.tan50=1\)

NV
8 tháng 7 2021

\(sin42^0-cos48^0=sin42^0-sin\left(90^0-48^0\right)=sin42^0-sin42^0=0\)

\(sin^261^0+sin^229^0=sin^261^0+cos^2\left(90^0-29^0\right)=sin^261^0+cos^261^0=1\)

\(tan40^0.tan50^0.tan45^0=tan40^0.cot\left(90^0-50^0\right).1=tan40^0.cot40^0=1\)

Sử dụng các công thức:

\(cosa=sin\left(90^0-a\right)\) ; \(sina=cos\left(90^0-a\right)\) ; \(tana=cot\left(90^0-a\right)\) ; \(tana.cota=1\)

AH
Akai Haruma
Giáo viên
13 tháng 8 2018

Lời giải:

a) Ta có tính chất quen thuộc là nếu \(\alpha+\beta=90^0\Rightarrow \cos \alpha=\sin \beta\)(có thể thấy rất rõ khi xét một tam giác vuông)

Tức là \(\sin \beta=\cos (90-\beta)\)

Do đó:

\(A=(\sin ^22^0+\sin ^288^0)+(\sin ^24^0+\sin ^286^0)+...+(\sin ^244^0+\sin ^246^0)\)

\(=\underbrace{(\sin ^22^0+\cos ^22^0)+(\sin ^24^0+\cos ^24^0)+...+(\sin ^244^0+\cos ^244^0)}_{22\text{cặp}}\)

\(=\underbrace{1+1+...+1}_{22}=22\) (tổng 2 bình phương sin và cos của một góc thì bằng 1)

b)

\(P=1994(\sin ^6x+\cos ^6x)-2991(\sin ^4x+\cos ^4x)\)

\(=1994[(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos^2 x+\cos ^4x)]-2991(\sin ^4x+\cos ^4x)\)

\(=1994(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-2991(\sin ^4x+\cos ^4x)\)

\(=-1994\sin ^2x\cos ^2x-997\sin ^4x-997\cos ^4x\)

\(=-997(\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x) \)

\(=-997(\sin ^2x+\cos ^2x)^2=-997\)

Do đó biểu thức không phụ thuộc vào $x$