K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi chiều rộng là x

=>Chiều dài là x+10

Theo đề, ta có: x^2+(x+10)^2=50^2

=>2x^2+20x-2400=0

=>x^2+10x-1200=0

=>(x+40)(x-30)=0

=>x=30

Diện tích là 30*40=1200m2

25 tháng 12 2018

Gọi x, y (m) lần lượt là chiều rộng và chiều dài của sân trường.

Điều kiện: 0 < x < 170; 0 < y < 170.

Vì chu vi của sân trường bằng 340 m nên ta có: 2(x + y) = 340

Vì ba lần chiều dài hơn bốn lần chiều rộng là 20m nên ta có: 3y – 4x = 20

Ta có hệ phương trình:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giá trị của x và y thỏa điều kiện bài toán.

Vậy chiều rộng của sân trường là 70m,

chiều dài của sân trường là 100m.

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

Lời giải:

Gọi chiều dài và chiều rộng sân trường lần lượt là $a$ và $b$ (m)

ĐK: $a>b>0$

Theo bài ra ta có:

\(\left\{\begin{matrix} a^2+b^2=50^2\\ a-b=10\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2+b^2=2500\\ a=b+10\end{matrix}\right.\)

\(\Rightarrow (b+10)^2+b^2=2500\)

\(\Leftrightarrow b^2+10b-1200=0\)

$\Leftrightarrow (b-30)(b+40)=0$

$\Rightarrow b=30$ (m)

$a=b+10=40$ (m)

Diện tích sân trường: $ab=30.40=1200$ (m2)

Đáp án C.

13 tháng 6 2017

Hệ hai phương trình bậc nhất hai ẩn

1 tháng 2 2021

Câu trả lời:

Gọi chiều dài và chiều rộng sân trường lần lượt là x và y ( 0<x,y<170 ; x>y)

Vì chu vi là 340 nên ta có PT: x+y=170 (1)

Vì 3 lần chiều dài lớn hơn 4 lầm chiều rộng 20 m nên ta có PT: 

3x - 4y = 20 (2)

Từ (1) và (2) ta có HPT :

\(\left\{{}\begin{matrix}x+y=170\\3x-4y=20\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=100\\y=70\end{matrix}\right.\)

Vậy chiều dài là chiều rộng sân trường lần lượt là 100m và 70m.

Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của sân trường(Điều kiện: a>0; b>0)

Vì chu vi của sân trường là 340m nên ta có phương trình: 

2(a+b)=340

\(\Leftrightarrow a+b=170\)(1)

Vì 3 lần chiều dài hơn 4 lần chiều rộng là 20m nên ta có phương trình:

3a-4b=20(2)

Từ (1) và (2) ta có được hệ phương trình:

\(\left\{{}\begin{matrix}a+b=170\\3a-4b=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=510\\3a-4b=20\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7b=490\\a+b=170\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=70\\a=170-70=100\end{matrix}\right.\)(thỏa ĐK)

Vậy: Chiều dài của sân trường là 100m; Chiều rộng của sân trường là 70m

18 tháng 2 2022

Nửa chu vi hình chữ nhật: 194 : 2 = 97 (m)

Gọi chiều dài là: x (m) (0 < x < 97)

Chiều rộng là: y (m) (0 < x < 97)

Nửa chu vi là 97 nên ta có phương trình:

x + y = 97 (1)

4 lần chiều dài hơn 5 lần chiều rộng là 10m, nên ta có phương trình:

4x - 5y = 10 (2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}x+y=97\\4x-5y=10\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=55\left(TM\right)\\y=42\left(TM\right)\end{matrix}\right.\)

Vậy chiều dài và chiều rộng sân trường lần lượt là: 55m và 42m

19 tháng 7 2018

Gọi chiều rộng sân trường là x (m)(x > 0)

Chiều dài sân trường là y (m) (y > x > 0)

Sân trường có chu vi là 340 m nên ta có : 2(x + y) = 340

Ba lần chiều dài hơn 4 lần chiều rộng là 20 m nên ta có: 3y – 4x = 20

Ta có hệ phương trình sau:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy chiều dài là 100m; chiều rộng là 70m.