Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CHỨNG MINH S CHIA HẾT CHO 10 :
\(S=4+4^2+...+4^{2004}\)
\(S=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2003}+4^{2004}\right)\)
\(S=1\left(4+4^2\right)+4^3\left(4+4^2\right)+...+4^{2003}\left(4+4^2\right)\)
\(S=1.20+4^3.20+...+4^{2003}.20\)
\(S=20.\left(1+4^3+...+4^{2003}\right)\)CHIA HẾT CHO 10 (VÌ 20 CHIA HẾT CHO 10 )
\(=>dpcm\)
CHỨNG MINH 3S+4 CHIA HẾT CHO 42004
\(S=4+4^2+4^3+...+4^{2004}\)
\(4S=4+4^2+4^3+...+4^{2005}\)
\(3S=4S-S=4^{2005}-4\)
MÀ 42005 CHIA HẾT CHO 42004
\(=>3S+4\)CHIA HẾT CHO \(4^{2004}\left(dpcm\right)\)
\(S=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{98}+4^{99}\right)\\ S=\left(1+4\right)+4^2\left(1+4\right)+...+4^{98}\left(1+4\right)\\ S=\left(1+4\right)\left(1+4^2+...+4^{98}\right)=5\left(1+4^2+...+4^{98}\right)⋮5\)
\(S=\left(1+4\right)+...+4^{98}\left(1+4\right)\)
\(=5\left(1+...+4^{98}\right)⋮5\)
\(b,\)Vì p là SNT > 3 => p có dạng : 3k + 1 ; 3k + 2 ( k thuộc N)
Với p = 3k + 1
\(=>\left(3k+2\right)\left(3k\right)⋮3\)(1)
Với p = 3k + 2
\(=>\left(3k+3\right)\left(3k+1\right)=3\left(k+1\right)\left(3k+1\right)⋮3\)(2)
Từ (1) và (2) => ĐPCM
\(A=4+4^2+4^3+...+4^{81}=4\left(1+4+4^2\right)+...+4^{79}\left(1+4+4^2\right)\)
\(=21\left(4+...+4^{79}\right)⋮21\)vậy ta có đpcm
3^2xS=3^2+3^4+3^6+...+3^100
=>3^2S-S=8S=3^100-3^2
=>S=(3^100-3^2):8
sai rùi không có cách nào hay hơn à
mình làm theo cách này kết quả khác.có cách nào hơn thì làm nha
S = 4+42+.....+42004
S = (4+42)+(43+44)+....+(42003+42004)
S = 1(4+42)+43(4+42)+.....+42003(4+42)
S = 1.20 + 43.20 +......+ 42003.20
S = 20(1+43+...+42003) chia hết cho 10 (vì 20 chia hết cho 10)
S = 4+42+43+...+42004
4S = 42+43+44+...+42005
3S = 4S - S = 42005 - 4
=> 3S + 4 = 42005
Mà 42005 chia hết cho 42004
=> 3S + 4 chia hết cho 42004 (đpcm)
tại sao 4^2005 lại chia hết cho 4^2004