Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+....+\left[2013+\left(-2014\right)+2015\right]\)
\(A=\left(-1\right)+\left(-1\right)+....+\left(-1\right)+2015\left(\text{1007 số hạng }\left(-1\right)\right)=1008\)
\(1.2.3.4..............2015-1.2.3.4..............2014-1.2.3.4.........2013.2014^2\)
\(=1.2.3........2013.\left(2014.2015-2014-2014^2\right)\)
\(=1.2.3..........2013.\left[2014.\left(2015-1-2014\right)\right]\)
\(=1.2.3............2013.\left(2014.0\right)\)
\(=1.2.3.........2013.0\)
=0
Chúc bn học tốt
\(1.2.3....2015-1.2.3....2014-1.2.3....2013.2014^2\)
\(=1.2.3...\left(2014+1\right)-1.2.3...\left(2014+1\right)\)
\(=0\)
a, s1 có 2015 hạng tử
=> s1= (2014:2).-1+2015=1007.(-1)+2015=1008
Lời giải:
a,S1=1+(-2)+3+(-4)+...+(-2014)+2015
=(1-2)+(3-4)+...+(2013-2014)+2015
=-1+(-1)+...+(-1)+2015
=-1.1007+2015
=(-1007)+2015
=1008
b,S2=(-2)+4+(-6)+8+...+(-2014)+2016
=(-2+4)+(-6+8)+...+(-2014+2016)
=2+2+...+2
=2.504
=1008
c,S3=1+(-3)+5+(-7)+...+2013+(-2015)
=(1-3)+(5-7)+...+(2013-2015)
=(-2)+(-2)+...+(-2)
=(-2).504
=-1008
d,S4=(-2015)+(-2014)+(-2013)+...+2015+2016
=(-2015+2015)+...+0+2016
=0+...+0+2016
=2016
STUDY WELL !
s1 = 1 + (-2) +3 + (-4)+...+ (-2014) + 2015
= (1+2015) -(2+2014) +...+ 1007
=1007
Lời giải:
$S=[1+(-2)]+[3+(-4)]+....+[2013+(-2014)]+2015$
$=\underbrace{(-1)+(-1)+....+(-1)}_{1007}+2015$
$=(-1).1007+2015=-1007+2015=1008$