Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 15 . 23 + 4. 23 - 5.7
= 15 . 8 + 4.8 - 35
= 120 + 32 - 35
= 152 - 35
= 117
b) 49 . 213+ 87. 72
=49.213+ 87. 49
=10437 + 4263
= 14700
c) 20+21+22+23+24+25+26+27+28+29+30
d) 56 : 53 + 3 . 32
= 56 : 53 + 3. 9
=53 + 27
= 125+ 27
= 152
e) 2 . 325 . 12 + 4 . 69 . 24 + 3 . 399 . 8
= 7800+ (6624+ 9576)
=7800+ 16200
= 24000
\(A=\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{107.111}\)
\(A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{107}-\frac{1}{111}\)
\(A=\frac{1}{3}-\frac{1}{111}\)
\(A=\frac{12}{37}\)
mà dài quá bạn ơi ban tách ra thành nhiều câu hỏi đi thế này trả lời lâu lắm
1) \(373737.73-37.737373\)
\(=37.10101.73-37.73.10101\)
\(=0\)
2) \(19.41414141-41.19191919\)
\(=19.41.1010101-41.19.1010101\)
\(=0\)
3) \(123456.456789456789-456789.123456123456\)
\(=123456.456789.1000001-456789.123456.1000001\)
\(=0\)
4) \(250.12.7\)
\(=250.4.3.7\)
\(=\left(250.4\right).\left(3.7\right)\)
\(=1000.21\)
\(=21000\)
5) \(24.125.9\)
\(=3.8.125.9\)
\(=\left(3.9\right).\left(8.125\right)\)
\(=27.1000\)
\(=27000\)
6) \(125.44.18\)
\(=125.4.11.2.9\)
\(=\left(125.4.2\right).\left(11.9\right)\)
\(=1000.99\)
\(=99000\)
7) \(8.24.6+12.4.52+2.22.24\)
\(=48.24+48.52+48.22\)
\(=48\left(24+52+22\right)\)
\(=48.98\)
\(=48\left(100-2\right)\)
\(=48.100-48.2\)
\(=4800-96\)
\(=4704\)
8) \(18.58.2-9.27.4+12.69.3\)
\(=36.58-36.27+36.69\)
\(=36\left(58-27+69\right)\)
\(=36.100=3600\)
9) \(30.85.3+18.72.5-45.37.2-9.20.10\)
\(=90.85+90.72-90.37-90.20\)
\(=90\left(85+72-37-20\right)\)
\(=90.100=9000\)
Tính các tổng sau:
1, S=1-2+3_4+..+25-26
S =-1+3-5+7-...-53+55 ( có 28 số hạng )
= (-1+3)+(-5+7)+...+(-53+55) ( có 28:2=14 nhóm )
= 2+2+...+2
= 2 . 14
= 28
a) Ta có: \(\dfrac{25^{28}+25^{24}+25^{20}+...+25^4+1}{25^{30}+25^{28}+...+25^2+1}\)
\(=\dfrac{25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+...+\left(25^4+1\right)}{25^{28}\left(25^2+1\right)+25^{24}\left(25^2+1\right)+...+\left(25^2+1\right)}\)
\(=\dfrac{\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}{\left(25^2+1\right)\left(25^{28}+25^{24}+...+1\right)}\)
\(=\dfrac{\left(25^4+1\right)\cdot\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}{\left(25^2+1\right)\left[25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+25^8\left(25^4+1\right)+\left(25^4+1\right)\right]}\)
\(=\dfrac{\left(25^4+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}\)
\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}\)
\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}\)
\(=\dfrac{1}{25^2+1}=\dfrac{1}{626}\)
S= 4 . 325 . 6 + 4 . 69 .24 + 3 . 399 . 8
S= 4 . 1950 + 4 . 1656 + 4 . 2394
S= 4 . ( 1950 + 1656 + 2394 )
S= 4 . 6000
S= 24000