Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số phần tử không gian mẫu: n(Ω)=52
Số phần tử của biến cố xuất hiện lá J đỏ hay lá 5 là n(A)=2+4=6
Suy ra
Chọn B.
Không gian mẫu: \(C_{52}^2\)
Số cách rút không có quân K nào: \(C_{48}^2\)
Xác suất: \(P=\dfrac{C_{52}^2-C_{48}^2}{C_{52}^2}=...\)
Số phần tử không gian mẫu: n(Ω) = 52
Số phần tử của biến cố xuất hiện lá bích n(A) = 13
Suy ra
Chọn B.
Số phần tử không gian mẫu: n(Ω) = 52
Số phần tử của biến cố xuất hiện lá át hay lá rô n(A) = 4 +12 = 16.
Suy ra
Chọn C.
Số phần tử không gian mẫu: n(Ω)=52
Số phần tử của biến cố xuất hiện lá át n(A)=4
Suy ra
Chọn C.
Có \(C^{13}_{52}\) cách chọn 13 lá bài bất kì trong bộ bài 52 lá
\(\Rightarrow n\left(\Omega\right)=C^{13}_{52}\)
Gọi A là biến cố "Chọn được 13 lá bài toàn quân cơ trong bộ bài 52 lá"
\(\Rightarrow n\left(A\right)=1\)
\(\Rightarrow P\left(A\right)=\dfrac{n\left(A\right)}{n\Omega}=\dfrac{1}{C^{13}_{52}}\)
Đáp án C.
Số cách chọn ngẫu nhiên 2 lá phiếu là: C 9 2 = 36 (cách)
Các cặp số có tổng là một số lẻ lớn hơn hoặc bằng 15 là: (9;8); (9;6); (8;7). Xác suất để tổng của hai số ghi trên hai lá phiếu rút được là một số lẻ lớn hơn hoặc bằng 15 là: 3 36 = 1 12
Gọi A là biến cố "Rút được 2 lá bài cơ".
Số kết quả thuận lợi là \(\left|\Omega_A\right|=C^2_{13}=78\).
Số kết quả có thể xảy ra là \(\left|\Omega\right|=C^2_{52}=1326\).
\(\Rightarrow\) Xác suất xảy ra biến cố A là \(P\left(A\right)=\dfrac{78}{1326}=\dfrac{1}{17}\).