Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: \(\left(\sqrt{7-3\sqrt{5}}\right)\cdot\left(7+3\sqrt{5}\right)\cdot\left(3\sqrt{2}+\sqrt{10}\right)\)
\(=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\left(7+3\sqrt{5}\right)\)
\(=4\left(7+3\sqrt{5}\right)\)
\(=28+12\sqrt{5}\)
Lời giải:
a.
$A=\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}$
$\sqrt{2}A=\sqrt{16+2\sqrt{55}}-\sqrt{16-2\sqrt{55}}-\sqrt{250}$
$=\sqrt{(\sqrt{11}+\sqrt{5})^2}-\sqrt{(\sqrt{11}-\sqrt{5})^2}-5\sqrt{10}$
$=|\sqrt{11}+\sqrt{5}|-|\sqrt{11}-\sqrt{5}|-5\sqrt{10}$
$=2\sqrt{5}-5\sqrt{10}$
$\Rightarrow A=\sqrt{10}-5\sqrt{5}$
b.
$B=\sqrt{7-3\sqrt{5}}.(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$
$B\sqrt{2}=\sqrt{14-6\sqrt{5}}(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$
$=\sqrt{(3-\sqrt{5})^2}(7+3\sqrt{5}).\sqrt{2}(3+\sqrt{5})$
$=(3-\sqrt{5})(7\sqrt{2}+3\sqrt{10})(3+\sqrt{5})$
$=(3^2-5)(7\sqrt{2}+3\sqrt{10})$
$=4(7\sqrt{2}+3\sqrt{10})=28\sqrt{2}+12\sqrt{10}$
$\Rightarrow B=28+12\sqrt{5}$
c.
$C=\sqrt{2}(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{6+\sqrt{35}}$
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{12+2\sqrt{35}}$
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{(\sqrt{7}+\sqrt{5})^2}
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})(\sqrt{7}+\sqrt{5})$
$=(7-5)(6-\sqrt{35})$
$=2(6-\sqrt{35})=12-2\sqrt{35}$
a)\(\left(\sqrt{21}+7\right)\cdot\sqrt{10-2\sqrt{21}}\)
\(=\left(\sqrt{21}+7\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
\(=\sqrt{7}\left(\sqrt{3}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\sqrt{7}\left(7-3\right)=4\sqrt{7}\)
b)\(\left(7+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)
\(=\left(7+\sqrt{14}\right)\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)
\(=\sqrt{7}\left(\sqrt{7}+\sqrt{2}\right)\left(\sqrt{7}-\sqrt{2}\right)\)
\(=\sqrt{7}\left(7-2\right)=5\sqrt{7}\)
`a)A=(3-sqrt5)sqrt{3+sqrt5}+(3+sqrt5)sqrt{3-sqrt5}`
`=sqrt{3-sqrt5}sqrt{3+sqrt5}(sqrt{3+sqrt5}+sqrt{3-sqrt5})`
`=sqrt{9-5}(sqrt{3+sqrt5}+sqrt{3-sqrt5})`
`=2(sqrt{3+sqrt5}+sqrt{3-sqrt5})`
`=sqrt2(sqrt{6+2sqrt5}+sqrt{6-2sqrt5})`
`=sqrt2(sqrt{(sqrt5+1)^2}+sqrt{(sqrt5+1)^2})`
`=sqrt2(sqrt5+1+sqrt5-1)`
`=sqrt{2}.2sqrt5`
`=2sqrt{10}`
`b)B=(5+sqrt{21})(sqrt{14}-sqrt6)sqrt{5-sqrt{21}}`
`=sqrt{5+sqrt{21}}sqrt{5-sqrt{21}}sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`
`=sqrt{25-21}sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`
`=2sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`
`=2sqrt2sqrt{5+sqrt{21}}(sqrt{7}-sqrt3)`
`=2sqrt{10+2sqrt{21}}(sqrt{7}-sqrt3)`
`=2sqrt{(sqrt3+sqrt7)^2}(sqrt{7}-sqrt3)`
`=2(sqrt3+sqrt7)(sqrt{7}-sqrt3)`
`=2(7-3)`
`=8`
`c)C=sqrt{4+sqrt7}-sqrt{4-sqrt7}`
`=sqrt{(8+2sqrt7)/2}-sqrt{(8-2sqrt7)/2}`
`=sqrt{(sqrt7+1)^2/2}-sqrt{(sqrt7+1)^2/2}`
`=(sqrt7+1)/sqrt2-(sqrt7-1)/2`
`=2/sqrt2=sqrt2`
Bài 1
a) Đặt VT = A
<=> \(2\sqrt{2}A=\left(8+2\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{8-2\sqrt{15}}\)
<=> \(2\sqrt{2}A=\left(\sqrt{5}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
<=> \(2A=\left(\sqrt{5}+\sqrt{3}\right)^2.\left(\sqrt{5}-\sqrt{3}\right)^2\)
<=> 2A = \(\left(5-3\right)^2=4\)
<=> A = 2
b) Đặt VT = B
<=> \(2\sqrt{2}B=\left(10+2\sqrt{21}\right).\left(\sqrt{14}-\sqrt{6}\right)\sqrt{10-2\sqrt{21}}\)
<=> \(2\sqrt{2}B=\left(\sqrt{7}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right).\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
<=> \(2B=\left(\sqrt{7}+\sqrt{3}\right)^2.\left(\sqrt{7}-\sqrt{3}\right)^2=\left(7-3\right)^2=16\)
<=> B = 8
Bài 2
Đặt VT = A
<=> A2 = \(\dfrac{\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}}{2}\)
<=> A2 = \(\dfrac{2\sqrt{5}+2\sqrt{5-4}}{2}=\dfrac{2\sqrt{5}+2}{2}=\sqrt{5}+1\)
<=> \(A=\sqrt{\sqrt{5}+1}\)
i: =-12*căn 3/2căn 3=-6
h: =72căn 2/12căn 2=6
g: =25căn 12/5căn 6=5căn 2
f: =(15:5)*căn 6:3=3căn 2
d: =-1/2*6*căn 10=-3căn 10
1. Đặt A =\(\sqrt{\frac{129}{16}+\sqrt{2}}\)
\(\sqrt{16}\)A = \(\sqrt{129+16\sqrt{2}}\)
4A = \(\sqrt{\left(8\sqrt{2}+1\right)^2}\)
4A = \(8\sqrt{2}+1\)
⇒ A = \(\frac{\text{}8\sqrt{2}+1}{4}\)= \(2\sqrt{2}\) + \(\frac{1}{4}\)
2. Đặt B = \(\sqrt{\frac{289+4\sqrt{72}}{16}}\)
\(\sqrt{16}\)B = \(\sqrt{289+24\sqrt{2}}\)
4B = \(\sqrt{\left(12\sqrt{2}+1\right)^2}\)
4B = \(12\sqrt{2}+1\)
⇒ B = \(\frac{12\sqrt{2}+1}{4}\)= \(3\sqrt{2}+\frac{1}{4}\)
3. \(\sqrt{2-\sqrt{3}}\). \(\left(\sqrt{6}+\sqrt{2}\right)\)
= \(\sqrt{2-\sqrt{3}}\). \(\sqrt{2}.\left(\sqrt{3}+1\right)\)
= \(\sqrt{4-2\sqrt{3}}\) . \(\left(\sqrt{3}+1\right)\)
= \(\sqrt{\left(\sqrt{3}-1\right)^2}\) . \(\left(\sqrt{3}+1\right)\)
= \(\left(\sqrt{3}-1\right)\). \(\left(\sqrt{3}+1\right)\)
= \(\left(\sqrt{3}\right)^2\) - 12
= 3 - 1
= 2
4. \(\left(\sqrt{21}+7\right)\). \(\sqrt{10-2\sqrt{21}}\)
= \(\left(\sqrt{21}+7\right)\) . \(\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
= \(\sqrt{7}\left(\sqrt{3}+\sqrt{7}\right)\) . \(\left(\sqrt{7}-\sqrt{3}\right)\)
= \(\sqrt{7}\) \(\left[\left(\sqrt{7}\right)^2-\left(\sqrt{3}\right)^2\right]\)
= \(\sqrt{7}\) . (7 - 3)
= 4\(\sqrt{7}\)
5. \(2.\left(\sqrt{10}-\sqrt{2}\right)\). \(\sqrt{4+\sqrt{6-2\sqrt{5}}}\)
= \(2.\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{4+\sqrt{5}-1}\)
= \(2.\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{3+\sqrt{5}}\)
= \(\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{12+4\sqrt{5}}\)
= \(\left(\sqrt{10}-\sqrt{2}\right)\) . \(\left(\sqrt{10}+\sqrt{2}\right)\)
= \(\left(\sqrt{10}\right)^2-\left(\sqrt{2}\right)^2\)
= 10 - 2
= 8
6. \(\left(4\sqrt{2}+\sqrt{30}\right)\). \(\left(\sqrt{5}-\sqrt{3}\right)\). \(\sqrt{4-\sqrt{15}}\)
= \(\sqrt{2}\)\(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\sqrt{4-\sqrt{15}}\)
= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\sqrt{8-2\sqrt{15}}\)
= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\)
= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)^2\)
= \(\left(4+\sqrt{15}\right)\). \(\left(8-2\sqrt{15}\right)\)
= 32 - \(8\sqrt{15}\) + \(8\sqrt{15}\) - 30
= 2
7. \(\left(7-\sqrt{14}\right)\) . \(\sqrt{9-2\sqrt{14}}\)
= \(\sqrt{7}\) \(\left(\sqrt{7}-\sqrt{2}\right)\). \(\left(\sqrt{7}-\sqrt{2}\right)\)
= \(\sqrt{7}\). \(\left(\sqrt{7}-\sqrt{2}\right)^2\)
= \(\sqrt{7}\) . \(\left(9-2\sqrt{14}\right)\)
= 9\(\sqrt{7}\) - 14\(\sqrt{2}\)
TICK MÌNH NHA!
1. \(=\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{3}{2}}\right)^2}+\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}\right)^2}-2\sqrt{4\sqrt{7}}=\frac{7}{2}+\frac{3}{2}+\frac{7}{2}-\frac{3}{2}-2\sqrt{4\sqrt{7}}\)
\(=7-2\sqrt{4\sqrt{7}}\)
cho hỏi tại sao có số \(\frac{7}{2};\frac{3}{2}\)zậy chỉ với