Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{6}}\left(\dfrac{\sqrt{3}}{2-\sqrt{6}}+\dfrac{\sqrt{3}}{2+\sqrt{6}}\right)-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{6}}\left(\dfrac{\sqrt{3}\left(2+\sqrt{6}\right)+\sqrt{3}\left(2-\sqrt{6}\right)}{\left(2-\sqrt{6}\right)\left(2+\sqrt{2}\right)}\right)-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{6}}\left(\dfrac{2\sqrt{3}+3\sqrt{2}+2\sqrt{3}-3\sqrt{2}}{4-6}\right)-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{2}.\sqrt{3}}.\dfrac{4\sqrt{3}}{-2}-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}+\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}+\dfrac{\sqrt{2}-\sqrt{3}-1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1+\left(\sqrt{2}-\sqrt{3}-1\right)\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1+2+\sqrt{6}-\sqrt{6}-3-\sqrt{2}-\sqrt{3}}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\dfrac{-2}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=-\dfrac{\sqrt{2}}{\sqrt{2}+\sqrt{3}}\)
\(a.\sqrt{72}-5\sqrt{2}+3\sqrt{12}\\ =6\sqrt{2}-5\sqrt{2}+6\sqrt{3}\\ =\sqrt{2}+6\sqrt{3}\\ b.6\sqrt{\dfrac{1}{2}}-\dfrac{2}{\sqrt{2}}-5\sqrt{2}\\ =3\sqrt{2}-\sqrt{2}-5\sqrt{2}\\ =-3\sqrt{2}\\ c.\dfrac{\sqrt{8}-2}{\sqrt{2}-1}+\dfrac{2}{\sqrt{3}-1}-\dfrac{3}{\sqrt{3}}\\ =2+1+\sqrt{3}-\sqrt{3}\\ =3\\ d.\sqrt[3]{64}+\sqrt[3]{27}-2\sqrt[3]{-8}\\ =4+3+4\\ =11\)
a, \(\dfrac{2}{5}\sqrt{75}-0,5\sqrt{48}+\sqrt{300}-\dfrac{2}{3}\sqrt{12}=2\sqrt{3}-2\sqrt{3}+10\sqrt{3}-\dfrac{4}{3}\sqrt{3}=\dfrac{26}{3}\sqrt{3}\)
b, \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3}{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{6}}{2}+\dfrac{\sqrt{3}}{\sqrt{3}+\sqrt{2}}\)
\(=\dfrac{\sqrt{6}}{2}+\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)\)
\(=\dfrac{\sqrt{6}}{2}+3-\sqrt{6}=\dfrac{6-\sqrt{6}}{2}\)
c, \(3\sqrt{2}-2\sqrt{3}+2\sqrt{3}+3\sqrt{2}=6\sqrt{2}\)
d, \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\sqrt{\left(\sqrt{6}-3\right)^2}+\sqrt{\left(2\sqrt{6}+3\right)^2}\)
\(=-\sqrt{6}+3+2\sqrt{6}+3=\sqrt{6}+6\)
e, Ghi đúng đề.
\(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=\dfrac{a+b-2\sqrt{ab}+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}=2\sqrt{b}\)
a, \(=>3-\sqrt{2}+\sqrt{50}=3-\sqrt{2}+5\sqrt{2}=3+4\sqrt{2}\)
b, \(=>\dfrac{\sqrt[3]{125.5}}{\sqrt[3]{5}}-\sqrt[3]{\left(-4\right).2}=\sqrt[3]{125}-\sqrt[3]{\left(-2\right)^3}\)
\(=5-\left(-2\right)=7\)
c, \(=>\sqrt{6}.\sqrt{\dfrac{6}{2}}-\sqrt{2}-3\sqrt{4.2}=\sqrt{6}.\sqrt{3}-\sqrt{2}-6\sqrt{2}\)
\(=\sqrt{18}-7\sqrt{2}=3\sqrt{2}-7\sqrt{2}=-4\sqrt{2}\)
d, \(=>\dfrac{\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}-\dfrac{2}{\sqrt{3}-1}=\sqrt{3}-\dfrac{2}{\sqrt{3}-1}\)
\(=\dfrac{3-\sqrt{3}-2}{\sqrt{3}-1}=\dfrac{1-\sqrt{3}}{\sqrt{3}-1}=-1\)
Lời giải:
1/
\(=\frac{3.\sqrt{5}-\sqrt{5}.\sqrt{15}}{\sqrt{15}-3}=\frac{-\sqrt{5}(\sqrt{15}-3)}{\sqrt{15}-3}=-\sqrt{5}\)
2/
\(=\frac{\sqrt{2+2\sqrt{2.3}+3}}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{(\sqrt{2}+\sqrt{3})^2}}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}}=1\)
3/
\(=\frac{2^2+2.2\sqrt{3}+3}{2+\sqrt{3}}=\frac{(2+\sqrt{3})^2}{2+\sqrt{3}}=2+\sqrt{3}\)
a: \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}\)
\(=\dfrac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
a: \(=\dfrac{6+4\sqrt{2}}{\sqrt{2}+2+\sqrt{2}}+\dfrac{6-4\sqrt{2}}{\sqrt{2}-2+\sqrt{2}}\)
\(=\dfrac{6+4\sqrt{2}}{2+2\sqrt{2}}+\dfrac{6-4\sqrt{2}}{2\sqrt{2}-2}\)
\(=\dfrac{3+2\sqrt{2}}{\sqrt{2}+1}+\dfrac{3-2\sqrt{2}}{\sqrt{2}-1}\)
=căn 2+1+căn 2-1=2căn 2
b: \(=\dfrac{\sqrt{3}+\sqrt{3+\sqrt{3}}+\sqrt{3}-\sqrt{3+\sqrt{3}}}{1-\sqrt{3}-1}=\dfrac{-2\sqrt{3}}{\sqrt{3}}=-2\)
bạn ơi cho mình hỏi câu b chi tiết hơn đước ko ạ
mình chưa hiểu lắm
Lời giải:
Đặt \(\sqrt{2+\sqrt{3}+\sqrt{2-\sqrt{3}}}=a; \sqrt{2+\sqrt{3}-\sqrt{2-\sqrt{3}}}=b\)
Có:
\(a^2+b^2=(2+\sqrt{3}+\sqrt{2-\sqrt{3}})+(2+\sqrt{3}-\sqrt{2-\sqrt{3}})=2(2+\sqrt{3})\)
\(=4+2\sqrt{3}=3+1+2\sqrt{3.1}=(\sqrt{3}+1)^2\)
\(ab=\sqrt{(2+\sqrt{3}+\sqrt{2-\sqrt{3}})(2+\sqrt{3}-\sqrt{2-\sqrt{3}})}\)
\(=\sqrt{(2+\sqrt{3})^2-(2-\sqrt{3})}=\sqrt{5+5\sqrt{3}}\)
Như vậy:
\(\frac{\sqrt{2+\sqrt{3}+\sqrt{2-\sqrt{3}}}}{\sqrt{2+\sqrt{3}-\sqrt{2-\sqrt{3}}}}+\frac{\sqrt{2+\sqrt{3}-\sqrt{2-\sqrt{3}}}}{\sqrt{2+\sqrt{3}+\sqrt{2-\sqrt{3}}}}=\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\)
\(=\frac{(\sqrt{3}+1)^2}{\sqrt{5+5\sqrt{3}}}=\frac{(\sqrt{3}+1)^2}{\sqrt{5}.\sqrt{\sqrt{3}+1}}=\frac{(\sqrt{3}+1)^{1.5}}{\sqrt{5}}\)