Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{24.315+3.561.8+4.124.6}{1+3+5+7+...+97+99-500}\) (1)
Đặt : S = 1 + 3 + 5 + 7 + ... + 97 + 99
SSH của S là : (99 -1) : 2 + 1 = 50(sh)
Tổng của S là : \(\frac{\left(99+1\right).50}{2}=\frac{100.50}{2}=\frac{5000}{2}=2500\)
Thay S vào biểu thức (1) Ta có :
\(\frac{24.315+3.561.8+4.124.6}{2500-500}\)
\(=\frac{3.8.315+3.561.8+4.2.124.3}{2000}\)
\(=\frac{3.8.315+3.561.8+8.124.3}{2000}\)
\(=\frac{\left(3.8\right).\left(315+561+124\right)}{2000}=\frac{24.1000}{2000}=\frac{24000}{2000}=12\)
b, \(\frac{3^9.3^{20}.2^8}{3^{24}.243.2^6}=\frac{3^{29}.2^8}{3^{24}.3^5.2^6}=\frac{3^{29}.2^6.2^2}{3^{29}.2^6}=2^2=4\)
lời giải nè:
= 39+20.28/324.243.26
=329.28/324.27.9.26
=329.28/324.3332.26
=1.22/1.1.1.1
=4
\(P=\frac{3^9\cdot3^{20}\cdot2^8}{3^{24}\cdot243\cdot2^6}\)
\(P=\frac{3^{29}\cdot2^8}{3^{29}\cdot2^6}\)
\(P=2^2=4\)
\(Q=\frac{2^{15}\cdot5^3\cdot2^6\cdot3^4}{8\cdot2^{18}\cdot81\cdot5}\)
\(Q=\frac{2^{21}\cdot5^3\cdot3^4}{2^{21}\cdot3^4\cdot5}\)
\(Q=5^2=25\)
a. \(\dfrac{3^{10}.\left(-5\right)^{21}}{\left(-5\right)^{20}.3^{12}}\) = \(\dfrac{3^{10}.\left(-5\right)^{20}.\left(-5\right)}{\left(-5\right)^{20}.3^{10}.3^2}\) = \(\dfrac{-5}{3^2}\)= \(\dfrac{-5}{9}\)
b. \(\dfrac{-11^5.13^7}{11^5.13^8}\) = \(\dfrac{-11^5.13^7}{11^5.13^7.13}\)= \(\dfrac{-1}{13}\)
c. \(\dfrac{2^{10}.3^{10}-2^{10}.3^9}{2^9.3^{10}}\)= \(\dfrac{2^{10}\left(3^{10}-3^9\right)}{2^9.3^{10}}\)= \(\dfrac{2^{10}.3}{2^9.3^{10}}\)= \(\dfrac{2^9.2.3}{2^9.3.3^9}\)= \(\dfrac{2}{3^9}\)=\(\dfrac{2}{19683}\)
`(3^9. 3^20. 2^8)/(3^24. 243. 2^6)`
`=(3^29. 2^8)/(3^24. 3^5. 2^6)`
`=(3^29. 2^8)/(3^29. 2^6)`
`=2^2=4`